Solution Architect - Advisory, Insights

Austin Fraser
Glasgow
2 months ago
Applications closed

Related Jobs

View all jobs

Solution Architect (Databricks)

Data Architect / Data Workstream Lead

Enterprise Applications Architect

Enterprise Architect

Data Engineer - UK Perm - London Hrbrid

Contract Python Software Engineer - Trading

Solution Architect - Advisory, Insights

Salary:£100,000 - £120,000 - Bonus + Pension + Private Healthcare

Location:London / UK Wide Location - Hybrid working

* To be successfully appointed to this role, you must be eligible forSecurity Check (SC) clearance.

The Client:

83zero is proud to be partnered with a global leader in digital services, driving innovation in customer experience through CRM, marketing, business intelligence, and cloud solutions. Their cutting-edge technologies are tailored for enterprise clients, delivering platforms that not only meet today's business needs but also pave the way for future growth. These solutions empower digital transformation initiatives, unlock new business opportunities, and make customer relationship operations more relevant in today's evolving landscape.

Hybrid Working:Your work locations will vary based on your role, business needs, and personal preferences. This will include a mix of office-based work, client sites, and home working, with the understanding that 100% home working is not an option.

Your Role:

  • Skilled Architects who bring a blend of consulting skills, with data and insights experience.
  • You will be able to lead teams of talented colleagues across architecture, insights and data to transform the way companies and government operate.
  • Our team is on a growth trajectory and we are looking for someone to help to accelerate this growth.

Your Skills and Experience:

  • Provide clearly articulated points of view on topics of focus, such as AI platforms, data engineering, security and privacy, DataOps, migration strategies etc.
  • Be a lead for fresh engagements, forming excellent relationships with client teams and building bridges for delivery activities.
  • Forge excellent links with related disciplines across the organisation, including AI engineering, cloud infrastructure, customer software development, consulting, systems engineering etc. and forge excellent links with partners and vendors across the industry to ensure that they always provide a leading point of view.

Experience:

  • Advisory skillsets including consulting, influencing, communication, coaching and mentoring skills.
  • Strong track record of architecting, designing and delivering complex large-scale data and/or analytics and AI centric solutions.
  • Experience of architecting solutions deployed in cloud, on-prem and hybrid or multi-cloud environments.

To apply please click the "Apply" button and follow the instructions.

For a further discussion, please contactCaitlin Earnshawon#removed#or alternatively email:

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Tips for Staying Inspired: How Data Science Pros Fuel Creativity and Innovation

Data science sits at the dynamic intersection of statistics, computer science, and domain expertise, driving powerful innovations in industries ranging from healthcare to finance, and from retail to robotics. Yet, the daily reality for many data scientists can be a far cry from starry-eyed talk of AI and machine learning transformations. Instead, it often involves endless data wrangling, model tuning, and scrutiny over metrics. Maintaining a sense of creativity in this environment can be an uphill battle. So, how do successful data scientists continue to dream big and innovate, even when dealing with the nitty-gritty of data pipelines, debugging code, or explaining results to stakeholders? Below, we outline ten practical strategies to help data analysts, machine learning engineers, and research scientists stay inspired and push their ideas further. Whether you’re just starting out or looking to reinvigorate a long-standing career, these pointers can help you find fresh sparks of motivation.

Top 10 Data Science Career Myths Debunked: Key Facts for Aspiring Professionals

Data science has become one of the most sought-after fields in the tech world, promising attractive salaries, cutting-edge projects, and the opportunity to shape decision-making in virtually every industry. From e-commerce recommendation engines to AI-powered medical diagnostics, data scientists are the force behind innovations that drive productivity and improve people’s lives. Yet, despite the demand and glamour often associated with this discipline, data science is also shrouded in misconceptions. Some believe you need a PhD in mathematics or statistics; others assume data science is exclusively about machine learning or coding. At DataScience-Jobs.co.uk, we’ve encountered a wide array of myths that can discourage talented individuals or mislead those exploring a data science career. This article aims to bust the top 10 data science career myths—providing clarity on what data scientists actually do and illuminating the true diversity and inclusiveness of this exciting field. Whether you’re a recent graduate, a professional looking to pivot, or simply curious about data science, read on to discover the reality behind the myths.

Global vs. Local: Comparing the UK Data Science Job Market to International Landscapes

How to evaluate salaries, opportunities, and work culture in data science across the UK, the US, Europe, and Asia Data science has proven to be more than a passing trend; it is now a foundational pillar of modern decision-making in virtually every industry—from healthcare and finance to retail and entertainment. As the volume of data grows exponentially, organisations urgently need professionals who can transform raw information into actionable insights. This high demand has sparked a wave of new opportunities for data scientists worldwide. In this article, we’ll compare the UK data science job market to those in the United States, Europe, and Asia. We’ll explore hiring trends, salary benchmarks, and cultural nuances to help you decide whether to focus your career locally or consider opportunities overseas or in fully remote roles. Whether you’re a fresh graduate looking for your first data science position, an experienced data professional pivoting from analytics, or a software engineer eager to break into machine learning, understanding the global data science landscape can be a game-changer. By the end of this overview, you’ll be better equipped to navigate the expanding world of data science—knowing which skills and certifications matter most, how salaries differ between regions, and what to expect from distinct work cultures. Let’s dive in.