Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Snowflake Data Engineer

RED Global
Manchester
2 weeks ago
Create job alert
Snowflake Developer (Contract)

Location: Manchester – 4 days per week on‑site, 1 day remote.


Employment type: Contract


Seniority level: Mid‑Senior level


Skills and Responsibilities

  • Strong understanding of Cloud Computing concepts and platforms.
  • Extensive experience in data modeling, including Dimensional Data Models, Entity-Relationship (ER) Models, and Data Vault architecture.
  • Proficient in writing complex SQL queries for data extraction, transformation, and analysis.
  • In‑depth knowledge of Snowflake architecture, including its roles, dynamic tables, streams, tasks, and security policies.
  • Proven experience working on data‑centric projects and applications across diverse domains.
  • Hands‑on experience with GitLab for version control and CI/CD processes.
  • Proficient in Python for data processing, automation, and analytics.
  • Good understanding of Data Science and Machine Learning concepts and workflows.
  • Sound knowledge of Data Management and Data Governance practices.
  • Demonstrated experience in effectively managing product owners and stakeholders.
  • Excellent team player with a positive attitude, proactive mindset, and strong collaboration skills.
  • Self‑driven, adaptable, and eager to learn new technologies and concepts.

Contact

If this interests you, please send an up‑to‑date CV and we can discuss the role in more detail.


Feel free to forward this advert to anyone who might be interested.


#J-18808-Ljbffr

Related Jobs

View all jobs

Snowflake Data Engineer

Snowflake Specialist Data Engineer

Senior Snowflake Data Engineer

Data Engineer - Informatica & Snowflake

Data Engineer - Informatica & Snowflake Copy

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.