Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

SG Technology | Lead Machine Learning Engineer

SG Technology
London
9 months ago
Applications closed

Our client, a pioneering company in autonomous vehicle technology, is seeking an accomplished Technical Lead for Embedded Automotive Software to join their onboard Software Platform team. This role demands a seasoned leader with extensive experience in developing high-performance, reliable automotive-grade software for distributed, edge computing devices. As a pivotal member of the team, the Technical Lead will design and implement software architectures to integrate machine learning-based autonomous driving (AD) solutions into an automotive L2-L3 system application. This high-impact role offers visibility across the organisation and provides technical leadership for a rapidly growing team.
The Technical Lead will drive the development and deployment of embedded software that powers advanced AI models for autonomous driving, managing complex technical programs and ensuring the resilience, compliance, and performance of embedded automotive systems. This position requires close collaboration with diverse teams and leadership in achieving key program milestones within the autonomous driving domain.
Key Responsibilities

  • Technical Program Leadership:Independently lead large-scale areas of embedded software development, ensuring timely delivery by effectively managing requirements, risks, development strategies, milestones, and dependencies, with a critical focus on safety and compliance.
  • Software Architecture Design:Design and build software architectures to integrate machine learning-based autonomous driving solutions into L2-L3 automotive systems. Ensure integration with OEM software to facilitate full sensor integration and high-quality data capture for fully autonomous applications.
  • Collaborative Development:Collaborate with cross-functional teams, including machine learning engineers, software developers, systems engineers, and product managers, to refine and enhance the software architecture.
  • Compliance and Safety: Work closely with safety and functional safety teams to ensure adherence to ISO 26262 standards and other regulatory requirements, supporting ASPICE-compliant processes.
  • Code Base Management:Maintain a robust, scalable code base for embedded systems to support efficient development and future scalability.
  • Real-Time System Management:Develop and maintain real-time Linux- and QNX-based applications for embedded automotive devices, enabling data collection, storage, and machine learning inference at the edge.
  • Fault Tolerance and Diagnostics:Create fault-tolerant software with comprehensive diagnostic capabilities to ensure swift issue identification and resolution in deployed automotive systems.
  • Mentorship and Cultural Development:Mentor engineers and lead design reviews and architecture discussions to foster a culture of technical excellence, safety, and compliance.

Essential Qualifications

  • Extensive experience in developing safety-critical automotive embedded software in C++ with a track record of successfully leading large technical programs and teams.
  • Deep understanding of ASPICE-compliant Software Development Life Cycle (SDLC) processes.
  • Expertise in building embedded software using the AUTOSAR architecture.
  • Strong leadership abilities with experience in leading cross-functional teams and engaging stakeholders across divisions.
  • Exceptional communication skills, capable of clearly conveying complex technical and business concepts.
  • Bachelors degree in Computer Science, Electrical Engineering, or a related field, or equivalent professional experience.


Desirable Qualifications

  • Proficiency in both C++ and Rust for embedded software development.
  • A Masters degree or higher in Computer Science, Electrical Engineering, or a related field.
  • Experience developing software for diverse automotive embedded systems and operating systems, especially Linux and QNX.
  • Background in L2-L3 autonomous driving applications and integrating ML-based AD solutions within automotive environments.
  • Familiarity with ISO 26262 functional safety standards.


This is a full-time, London-based role with a hybrid working model to foster innovation and collaboration. With core working hours, the team can determine a schedule that balances office presence and remote work. This is an exciting opportunity to lead and shape the future of autonomous driving technology in a fast-paced, innovation-driven environment.

JBRP1_UKTJ

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why the UK Could Be the World’s Next Data Science Jobs Hub

Data science is arguably the most transformative technological field of the 21st century. From powering artificial intelligence algorithms to enabling complex business decisions, data science is essential across sectors. As organisations leverage data more rapidly—from retailers predicting customer behaviour to health providers diagnosing conditions—demand for proficiency in data science continues to surge. The United Kingdom is particularly well-positioned to become a global data science jobs hub. With world-class universities, a strong tech sector, growing AI infrastructure, and supportive policy environments, the UK is poised for growth. This article delves into why the UK could emerge as a leading destination for data science careers, explores the job market’s current state, outlines future opportunities, highlights challenges, and charts what must happen to realise this vision.

The Best Free Tools & Platforms to Practise Data Science Skills in 2025/26

Data science continues to be one of the most exciting, high-growth career paths in the UK and worldwide. From predicting customer behaviour to detecting fraud and driving healthcare innovations, data scientists are at the forefront of digital transformation. But breaking into the field isn’t just about having a degree. Employers are looking for candidates who can demonstrate practical data science skills — analysing datasets, building machine learning models, and presenting insights that solve real business problems. The best part? You don’t need to spend thousands on premium courses or expensive software. There are dozens of high-quality, free tools and platforms that allow you to practise data science in 2025. This guide explores the best ones to help you learn, experiment, and build portfolio-ready projects.

Top 10 Skills in Data Science According to LinkedIn & Indeed Job Postings

Data science isn’t just a buzzword — it’s the engine powering innovation in sectors across the UK, from finance and healthcare to retail and public policy. As organisations strive to turn data into insight and action, the need for well-rounded data scientists is surging. But what precise skills are employers demanding right now? Drawing on trends seen in LinkedIn and Indeed job ads, this article reveals the Top 10 data science skills sought by UK employers in 2025. You’ll get guidance on showcasing these in your CV, acing interviews, and building proof of your capabilities.