Senior/Principal Data Scientist – Turing (LLM’s, KGs & Graph)

Relation
London
2 months ago
Applications closed

Related Jobs

View all jobs

Senior/Principal Data Scientist – Ada

Principal Data Scientist / AI Engineer

Principal Data Scientist - Marketing

Principal Data Scientist – Operational Research, Simulation & ML (Basé à Hounslow)

Senior Data Scientist (MLOps)

Senior Principal Biostatistician

Senior/Principal Data Scientist – Turing (LLM’s, KGs & Graph)

London

About Relation

Relation is an end-to-end biotech company developing transformational medicines, with technology at our core. Our ambition is to understand human biology in unprecedented ways, discovering therapies to treat some of life’s most devastating diseases. We leverage single-cell multi-omics directly from patient tissue, functional assays, and machine learning to drive disease understanding—from cause to cure.

This year, we embarked on an exciting dual collaboration with GSK to tackle fibrosis and osteoarthritis, while also advancing our own internal osteoporosis programme. By combining our cutting-edge ML capabilities with GSK’s deep expertise in drug discovery, this partnership underscores our commitment to pioneering science and delivering impactful therapies to patients.

We are rapidly scaling our technology and discovery teams, offering a unique opportunity to join one of the most innovative TechBio companies. Be part of our dynamic, interdisciplinary teams, collaborating closely to redefine the boundaries of possibility in drug discovery.

Opportunity

Be part of the innovative Turing team, where you will leverage advanced computational technologies such as large language models (LLMs) and knowledge graphs (KGs). As a Senior/Principal Data Scientist, you will play a pivotal role in driving data-driven drug discovery through these cutting-edge approaches.

The Turing team integrates computational and biological expertise to utilise knowledge graphs and Large Language Models in drug discovery. By connecting diverse datasets and computational outputs, the team enhances decision-making in target prioritisation and therapeutic development.

Your responsibilities

  • Develop and apply Graph and LLM base solutions/methods for drug target identification and validation.
  • Integrate insights from omics and clinical data using graph-based models.
  • Collaborate with interdisciplinary teams to align computational approaches with research goals.
  • Design workflows to extract actionable insights from large-scale datasets.
  • Advance methodologies for computational drug discovery using graph-based techniques.

Professionally, you have

  • PhD in computational biology, data science, or a related field.
  • Expertise in LLMs, KGs, multi-agent reasoning systems or graph-based computational techniques.
  • Proficiency in Python and frameworks for handling large-scale datasets.
  • Strong understanding of the drug discovery pipeline and computational modelling.

Desirable knowledge or experiences

  • Experience integrating graph-based approaches with multi-omics data.
  • Familiarity with graph database systems and their applications in biology.

Personally, you are

  • Inclusive leader and team player.
  • Clear communicator.
  • Driven by impact.
  • Humble and hungry to learn.
  • Motivated and curious.
  • Passionate about making a difference in patients’ lives.

Join us in this exciting role, where your contributions will directly impact advancing our understanding of genetics and disease risk, supporting our mission to deliver transformative medicines to patients. Together, we’re not just conducting research—we’re setting new standards in the fields of machine learning and genetics.

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.