Senior/Principal Data Scientist – Cross Indication

Relation Therapeutics Limited
London
2 weeks ago
Applications closed

Related Jobs

View all jobs

Senior/Principal Bioinformatics Engineer

Senior Data Scientist - Deep Learning focus

Backend Engineer (Feature team)

Principal Data Analyst

Software Development Engineer, Alexa Smart Properties

Senior Engineering Manager Cardiff, London or Remote (UK)

Senior/Principal Data Scientist – Cross Indication

London

About Relation

Relation is an end-to-end biotech developing transformational medicines, with technology at our core. Our ambition is to understand human biology in unprecedented ways, discovering therapies to treat some of life’s most devastating diseases. We leverage single-cell multi-omics directly from patient tissue, functional assays, and machine learning to drive disease understanding, from cause to cure.

This year, we’ve embarked on an exciting double collaboration with GSK to tackle fibrosis and osteoarthritis, alongside advancing our own internal osteoporosis programme. By combining our cutting-edge ML capabilities with their deep expertise in drug discovery, this partnership underscores our commitment to pioneering science and delivering impactful therapies to patients.

We are rapidly scaling our technology and discovery teams, offering a unique opportunity to join one of the most innovative TechBio companies. Be part of our dynamic, interdisciplinary teams, collaborating closely to redefine the boundaries of possibility in drug discovery. Our state-of-the-art wet and dry laboratories, located in the heart of London, provide an exceptional environment to foster interdisciplinarity and turn groundbreaking ideas into positive impact for patients.

We are committed to building diverse and inclusive teams. Relation is an equal opportunities employer and does not discriminate on the grounds of gender, sexual orientation, marital or civil partner status, gender reassignment, race, colour, nationality, ethnic or national origin, religion or belief, disability, or age. We cultivate innovation through collaboration, empowering every team member to do their best work and develop to their highest potential.

By joining Relation, you will be part of an exceptionally talented team, with extraordinary leverage to advance the field of drug discovery. Your work will shape our culture, strategic direction, and, most importantly, impact patients’ lives.

Opportunity

This is a unique opportunity for a data scientist to work on multi-omics data to drive transformative insights into drug discovery. As a member of the Cross Indication team, you will contribute to identifying and validating drug targets through advanced data analysis and innovative computational approaches.

The Cross Indication team collaborates across both Relations internal and partnership programmes, applying state-of-the-art computational methods to integrate diverse datasets. By combining biological insights with advanced data analytics, the team drives target discovery and validation initiatives.

Your responsibilities

  1. Develop and implement computational workflows for analysing multi-omics data.
  2. Perform data integration to uncover disease mechanisms and identify actionable targets.
  3. Design statistical models for analysing transcriptomics and other omics datasets.
  4. Collaborate closely with experimental and machine learning teams to validate computational insights.
  5. Present findings and methodologies to internal stakeholders and contribute to publications.

Professionally, you have

  1. PhD in computational biology, bioinformatics, or a related quantitative field.
  2. Extensive experience in multi-omics data analysis, including transcriptomics.
  3. Proficiency in Python and familiarity with high-performance computing environments.

Desirable knowledge or experiences

  1. Familiarity with single-cell transcriptomics or patient-derived datasets.
  2. Experience working in interdisciplinary teams within biotech or pharma settings.
  3. Knowledge of machine learning techniques applied to biological data.
  4. A background in statistical modelling and algorithm development.

Personally, you are

  1. Inclusive leader and team player.
  2. Clear communicator.
  3. Driven by impact.
  4. Humble and hungry to learn.
  5. Motivated and curious.
  6. Passionate about making a difference in patients’ lives.

Join us in this exciting role where your contributions will have a direct impact on advancing our understanding of genetics and disease risk, supporting our mission to get transformative medicines to patients. Together, we're not just doing research; we're setting new standards in the field of machine learning and genetics. The patient is waiting!

Relation is a committed equal opportunities employer.

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Tips for Staying Inspired: How Data Science Pros Fuel Creativity and Innovation

Data science sits at the dynamic intersection of statistics, computer science, and domain expertise, driving powerful innovations in industries ranging from healthcare to finance, and from retail to robotics. Yet, the daily reality for many data scientists can be a far cry from starry-eyed talk of AI and machine learning transformations. Instead, it often involves endless data wrangling, model tuning, and scrutiny over metrics. Maintaining a sense of creativity in this environment can be an uphill battle. So, how do successful data scientists continue to dream big and innovate, even when dealing with the nitty-gritty of data pipelines, debugging code, or explaining results to stakeholders? Below, we outline ten practical strategies to help data analysts, machine learning engineers, and research scientists stay inspired and push their ideas further. Whether you’re just starting out or looking to reinvigorate a long-standing career, these pointers can help you find fresh sparks of motivation.

Top 10 Data Science Career Myths Debunked: Key Facts for Aspiring Professionals

Data science has become one of the most sought-after fields in the tech world, promising attractive salaries, cutting-edge projects, and the opportunity to shape decision-making in virtually every industry. From e-commerce recommendation engines to AI-powered medical diagnostics, data scientists are the force behind innovations that drive productivity and improve people’s lives. Yet, despite the demand and glamour often associated with this discipline, data science is also shrouded in misconceptions. Some believe you need a PhD in mathematics or statistics; others assume data science is exclusively about machine learning or coding. At DataScience-Jobs.co.uk, we’ve encountered a wide array of myths that can discourage talented individuals or mislead those exploring a data science career. This article aims to bust the top 10 data science career myths—providing clarity on what data scientists actually do and illuminating the true diversity and inclusiveness of this exciting field. Whether you’re a recent graduate, a professional looking to pivot, or simply curious about data science, read on to discover the reality behind the myths.

Global vs. Local: Comparing the UK Data Science Job Market to International Landscapes

How to evaluate salaries, opportunities, and work culture in data science across the UK, the US, Europe, and Asia Data science has proven to be more than a passing trend; it is now a foundational pillar of modern decision-making in virtually every industry—from healthcare and finance to retail and entertainment. As the volume of data grows exponentially, organisations urgently need professionals who can transform raw information into actionable insights. This high demand has sparked a wave of new opportunities for data scientists worldwide. In this article, we’ll compare the UK data science job market to those in the United States, Europe, and Asia. We’ll explore hiring trends, salary benchmarks, and cultural nuances to help you decide whether to focus your career locally or consider opportunities overseas or in fully remote roles. Whether you’re a fresh graduate looking for your first data science position, an experienced data professional pivoting from analytics, or a software engineer eager to break into machine learning, understanding the global data science landscape can be a game-changer. By the end of this overview, you’ll be better equipped to navigate the expanding world of data science—knowing which skills and certifications matter most, how salaries differ between regions, and what to expect from distinct work cultures. Let’s dive in.