Senior Software Engineer, ML Ops

ZipRecruiter
London
2 weeks ago
Create job alert

Job Description

Who are we?

Look at the latest headlines and you will see something Ki insures. Think space shuttles, world tours, wind farms, and even footballers’ legs. Ki’s mission is simple. Digitally disrupt and revolutionise a 335-year-old market. Working with Google and UCL, Ki has created a platform that uses algorithms, machine learning and large models to give insurance brokers quotes in seconds, rather than days. Ki is proudly the biggest global algorithmic insurance carrier. It is the fastest growing syndicate in the Lloyd's of London market, and the first ever to make $100m in profit in 3 years. Ki’s teams have varied backgrounds and work together in an agile, cross-functional way to build the very best experience for its customers. Ki has big ambitions but needs more excellent minds to challenge the status-quo and help it reach new horizons.

What’s the role?

Our broker platform is the core technology to Ki's success – allowing us to evolve underwriting intelligently and unlock massive scale.

We're a multi-disciplined team, bringing together expertise in software and data engineering, full stack development, platform operations, algorithm research, and data science. Our squads focus on delivering high-impact features – we favour a highly iterative, analytical approach.

Initially, you would be working as part of the core technology group in the model ops squad. The Model Ops squad are focused on enabling Ki to build and deploy best in market algorithmic underwriting models and graphs of models at scale. Sample products you might be involved in building include developer tooling, microservice orchestration systems, ML model serving infrastructure, feature serving and storage infrastructure.

Principal Accountabilities:

  • Build robust and scalable software for business critical, web-based applications
  • Design, build, test, document and maintain APIs and integrations
  • Ensure quality control using industry standard techniques such as automated testing, pairing, and code review
  • Document technical design and analysis work
  • Assess current system architecture and identify opportunities for growth and improvement
  • Build mock-ups or prototypes to explore and troubleshoot new initiatives
  • Explore new ideas and emerging technologies, develop prototypes quickly
  • Uphold and advance the wider engineering team’s principles and ways of working
  • Serve as a domain expert for one or more of Ki’s core technologies
  • Mentor and coach colleagues in both engineering and business domain subjects

Required Skills and Experience:

  • Experience as a mid-senior level engineer working across a modern stack
  • Strong software engineering principles (SOLID, DRY, data modelling)
  • Professional experience with a server-side language, ideally Python
  • Comfortable working with cloud infrastructure, infrastructure as code, familiar with standard logging and monitoring tools used to investigate issues
  • Experience with continuous integration, or ideally, continuous delivery
  • Strong familiarity with build tools and version control tools (e.g. Git/Github)
  • Experience working in agile teams, following Scrum or Kanban, participating in regular ceremonies including stand-ups, planning, and retrospectives
  • Previous experience of software development in the financial markets, Fintech or Insurtech is preferable
  • Experience or interest in building developer tooling, platform engineering, and/or machine learning is desirable

Our culture

& is at the heart of our business at Ki. We recognise that in diversity of thought, physical ability, and social background bring richness to our working environment. No matter who you are, where you’re from, how you think, or who you love, we believe you should be you.

You’ll get a highly competitive remuneration and benefits package. This is kept under constant review to make sure it stays relevant. We understand the power of saying thank you and take time to acknowledge and reward extraordinary effort by teams or individuals.

#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Software Engineer, ML Ops

Senior Manager - Data & AI Engineering

Machine Learning Engineer, Product FullTime London

Platform Engineer

Senior Software Engineer - MLOps

Senior Machine Learning Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Global vs. Local: Comparing the UK Data Science Job Market to International Landscapes

How to evaluate salaries, opportunities, and work culture in data science across the UK, the US, Europe, and Asia Data science has proven to be more than a passing trend; it is now a foundational pillar of modern decision-making in virtually every industry—from healthcare and finance to retail and entertainment. As the volume of data grows exponentially, organisations urgently need professionals who can transform raw information into actionable insights. This high demand has sparked a wave of new opportunities for data scientists worldwide. In this article, we’ll compare the UK data science job market to those in the United States, Europe, and Asia. We’ll explore hiring trends, salary benchmarks, and cultural nuances to help you decide whether to focus your career locally or consider opportunities overseas or in fully remote roles. Whether you’re a fresh graduate looking for your first data science position, an experienced data professional pivoting from analytics, or a software engineer eager to break into machine learning, understanding the global data science landscape can be a game-changer. By the end of this overview, you’ll be better equipped to navigate the expanding world of data science—knowing which skills and certifications matter most, how salaries differ between regions, and what to expect from distinct work cultures. Let’s dive in.

Data Science Leadership for Managers: Strategies to Motivate, Mentor, and Set Realistic Goals in Data-Driven Teams

Data science has become a linchpin in modern business, transforming oceans of raw data into actionable insights that guide strategy, product development, and personalised customer experiences. With this surge in data-centric operations, the need for effective data science leadership has never been more critical. Guiding a team of data scientists, analysts, and machine learning engineers requires not only technical acumen but also the ability to foster collaboration, champion ethical practices, and align complex modelling efforts with overarching business goals. This article provides practical guidance for managers and aspiring leaders aiming to excel in data-driven environments. By exploring strategies to motivate data science professionals, develop mentoring frameworks, and set achievable milestones, you will be better prepared to steer your team towards meaningful, evidence-based outcomes.

10 Essential Books to Read to Nail Your Data Science Career in the UK

Data science continues to be one of the most exciting and rapidly evolving fields in tech. With industries across the UK—ranging from finance and healthcare to e-commerce and government—embracing data-driven decision-making, the demand for skilled data scientists has soared. Whether you're a recent graduate looking for your first role or a professional aiming to advance your career, staying updated through books is crucial. In this article, we explore ten essential books every data science job seeker in the UK should read. Each book provides valuable insights into core concepts, practical applications, and industry-standard tools, helping you build skills employers are actively looking for.