Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior RF Data Scientist / Research Engineer

Adria Solutions Ltd
Cambridge
1 day ago
Create job alert

Senior RF Data Scientist / Research Engineer – Near Cambridge 

My client, a fast-growing AI company based near Cambridge, is seeking a Senior RF Data Scientist / Research Engineer to work at the intersection of RF hardware, digital signal processing, and machine learning. This hands-on R&D role involves analysing complex RF datasets, developing advanced signal-processing pipelines, and contributing to cutting-edge UAV/drone detection technologies.

You will play a key role in prototyping new sensing capabilities, working with SDRs, designing real-world RF experiments, and integrating machine-learning models into early-stage hardware–software systems. This position is ideal for someone who thrives in fast-paced, iterative prototyping environments.

Key Responsibilities

Analysing raw IQ data from SDR platforms (e.g., bladeRF, USRP) to extract, classify, and interpret RF signal features

Building diagnostic RF analysis tools (time–frequency plots, cyclic spectra, EVM, autocorrelation, constellation tracking, etc.)

Designing RF data-processing pipelines built around practical hardware constraints (bandwidth, ADC limits, gain stages, timing jitter)

Modelling RF front-end behaviour (filters, mixers, LOs, AGC, noise figure) to improve signal integrity and inference accuracy

Developing ML and statistical models for RF classification, anomaly detection, and emitter identification

Prototyping real-time or batch-processing systems in Python (NumPy, SciPy, PyTorch) with potential integration via ZMQ, GNU Radio, or C++ backends

Leading RF data collection, field experiments, and over-the-air testing using drones, wireless devices, and custom transmitters

Requirements

Strong Python proficiency for RF data analysis and prototyping (NumPy, SciPy, matplotlib, scikit-learn, PyTorch)

Solid understanding of DSP fundamentals (FFT, filtering, modulation, correlation, noise modelling, resampling)

Familiarity with SDR frameworks such as GNU Radio, SDRangel, osmoSDR, or SoapySDR

Practical understanding of RF hardware chains (antenna → filters → mixers → ADC) and their impact on baseband data

Experience analysing wireless protocols (Wi-Fi, LTE, LoRa, etc.) and physical-layer structures

Comfortable debugging SDR setups and performing field-based RF data collection

Strong communication skills and ability to work effectively within an iterative R&D team

Desirable

Hands-on experience with SDRs (bladeRF, HackRF, USRP, PlutoSDR) and RF lab equipment (spectrum analysers, VNAs, signal generators)

Experience in passive radar, beamforming, TDoA, Doppler, or direction finding

Familiarity with embedded or real-time systems (FPGA pipelines, GPU acceleration, etc.)

Programming experience in MATLAB, C++, Rust, or similar languages

Knowledge of RF circuit principles (impedance matching, filter design, gain budgeting)

Experience designing or testing antenna arrays for sensing/detection

Publications, patents, or open-source RF/ML contributions

Role Details

Location: Cambridge area (onsite or hybrid depending on project needs)

Department: Research & Prototyping Team

Impact: Direct involvement in early-stage hardware–software product development

Interested? Please Click Apply Now!

Senior RF Data Scientist / Research Engineer – Near Cambridge

Related Jobs

View all jobs

Senior RF Data Scientist / Research Engineer

Senior RF Data Scientist / Research Engineer

Senior RF Data Scientist / Research Engineer

Senior Research Scientist: Data Science and Machine Learning AIP

Senior Research Scientist: Data Science and Machine Learning AIP

Senior Research Scientist: Data Science and Machine Learning AIP

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.