Senior MLOps Engineer

Extreme Reach
1 month ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist (MLOps)

Senior Data Engineer - Databricks

Senior Data Engineer - Databricks

Senior Data Scientist (Document Search)

Data Scientist (Knowledge Graph)

Associate Director, Data Science and Innovation (Basé à London)

XR is a global technology platform powering the creative economy. Its unified platform moves creative and productions forward, simplifying the fragmentation and delivering global insights that drive increased business value. XR operates in 130 countries and 45 languages, serving the top global advertisers and enabling $150 billion in video ad spend around the world. More than half a billion creative brand assets are managed in XR’s enterprise platform. 

Above all, we are a supportive and collaborative culture dedicated to DEI. We are caring, dedicated, positive, genuine, trustworthy, experienced, passionate and fun people with loyalty to our customers and our fellow teammates. It is our belief that the better we work together to help our clients achieve their goals, the more successful XR will be.  

The Opportunity 

The Senior MLOps Engineer plays a critical role in ensuring the seamless integration, deployment, monitoring, and scaling of machine learning models into production. The role blends the expertise of DevOps and machine learning to bridge the gap between data science and operational systems, ensuring that ML models perform reliably and at scale in real-world environments. As the Senior MLOps Engineer, you'll drive best practices for model lifecycle management and create the infrastructure to automate and streamline workflows. 

Job Responsibilities 

  • Design and architect the AI/ML models platform to support scalable, efficient, and high-performance machine learning workflows. 
  • Build and manage infrastructure that supports the deployment of machine learning models. This includes leveraging cloud services (AWS), CDK, and containerization tools like Docker. 
  • Architecting and developing MLOps systems with tools such as AWS Sagemaker, MLFlow, Stepfunctions, Lambdas. 
  • Lead the design and implementation of CI/CD pipelines to automate model deployment and rollback processes, ensuring that models can be delivered seamlessly to production aiming to reduce manual intervention and increasing system reliability. 
  • Ensure scalability and efficiency of the models to handle real-time predictions and batch processing. 
  • Set up monitoring and logging solutions for tracking the performance of models in production (DataDog, Cloudwatch).  
  • Define and promote best practices in MLOps. 
  • Provide technical leadership and mentorship to MLOps engineers on technologies, and standard processes. 
  • Partner with the global engineering team to drive cross-functional alignment and ensure seamless integration of AI ML models into wider data ecosystem. 
  • Work closely with Data Scientists, DevOps teams, and Product Managers to ensure that machine learning models are integrated into business workflows and deployed effectively. 
  • Stay up-to-date with the latest trends and technologies in MLOps and machine learning deployment and identify opportunities to incorporate new tools or practices to improve efficiency. 

Requirements

  • MS/BS in Computer Science or related background preferred; 
  • 5+ years of experience in MLOps or related roles, with at least 2+ years in a senior engineering capacity;
  • Proven experience leading and mentoring teams, managing multiple stakeholders, and delivering projects on time; 
  • Proficiency in Python is essential; 
  • Experience with shell scripting, system diagnostic and automation tooling; 
  • Proficiency and professional experience of ML and computer vision; 
  • Have built and deployed ML, computer vision or GenAI solutions (PyTorch, TensorFlow); 
  • Experience working with databases to manage the flow of data through the machine learning lifecycle; 
  • Experience with cloud-native services for machine learning, such as AWS SageMaker, MLFlow, Stepfunctions, Lambdas is essential; 
  • Deep expertise in Docker for containerization of machine learning models and tools is essential; 
  • Experience delivering environment using infrastructure-as-code techniques (AWS CDK, CloudFormation); 
  • Experience setting up and managing continuous CI/CD pipelines for ML workflows using tools like Jenkins, GitLab; 
  • Experience in fast-paced, innovative, Agile SDLC; 
  • Strong problem solving, organization and analytical skills; 
  • Experience with Databricks is beneficial; 
  • Experience in building and managing training, evaluation and testing datasets in beneficial; 
  • Knowledge of security best practices in the context of machine learning. 

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.