National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

(Senior) Lead Data Engineer

IFS
Surrey
3 months ago
Create job alert

Job Description

Are you ready to make waves in the world of AI? We're on the hunt for a Senior/Lead Data Engineer to join our dynamic global R&D organization. We're looking for someone who brings the heat, fosters seamless collaboration, and is always chasing that next level of excellence.

You'll be at the forefront of infusing cutting-edge advanced analytics and AI into IFS Cloud, revolutionizing Enterprise Resource Planning, Asset Management, and Field Service Management. Get ready to tackle high-stakes challenges like IIoT, predictive maintenance, forecasting, anomaly detection, optimization, and unleashing generative AI. Your data engineer wizardry will power our solutions, crafting efficient data pipelines, expanding our data platform capabilities, and pushing the envelope of data-driven innovation across our product lineup.

Your sharp critical thinking and knack for real-world business dilemmas will be instrumental in orchestrating end-to-end solutions. From spotting opportunities on the horizon to delivering high-performance, scalable data solutions, you'll play a pivotal role in our success.

If you're a maestro of mapping business processes and deciphering complex data, if advanced analytics and AI are your jam, and if you take pride in building top-tier data pipelines for production environments, we want to hear from you.

How Will You Shape the Future?

This role is all about hands-on technical prowess, and we expect you to bring your A-game. You'll be in the driver's seat, working with autonomy, accountability, and technical brilliance. Your mission includes:

Spotting high-value data opportunity within our IFS offerings, translating raw data into powerful features and reusable data assets. Serving as our data expert, guiding us towards the latest and greatest data technology and platform trends. You'll be the guru driving our data platform evolution and providing data project estimates. Leading the Data Engineering team in crafting and integrating data projects from the ground up. From framing problems and experimenting with new data sources and tools to the grand finale of data pipeline implementation and deployment. You will ensure scalability and top-tier performance. Locking arms with ML Engineers, Data Scientists, Architects, and Product/Program Managers. Together, you'll define, create, deploy, monitor, and document data pipelines to power advanced AI solutions. Becoming our data technology evangelist. Get ready to shine on the conference stage, host webinars, and pen compelling white papers and blogs. Share your discoveries with clients and internal stakeholders, offering actionable insights that drive change.

Qualifications

To succeed in this role, you'll need:

7+ years of data engineering experience, skilled in scalable solutions like Data Lakes/Lakehouse, Graph and Vector Databases (, ADLS, Elasticsearch, MongoDB, Azure AI search, etc.).

Proficient in data pipelines across cloud/on-premises, using Azure and other technologies. Experienced in orchestrating data workflows and Kubernetes clusters on AKS using Airflow, Kubeflow, Argo, Dagster or similar. Skilled with data ingestion tools like Airbyte, Fivetran, etc. for diverse data sources. Expert in large-scale data processing with Spark or Dask. Strong in Python, Scala, C# or Java, cloud SDKs and APIs. AI/ML expertise for pipeline efficiency, familiar with TensorFlow, PyTorch, AutoML, Python/R, and MLOps (MLflow, Kubeflow). Solid in DevOps, CI/CD automation with Bitbucket Pipelines, Azure DevOps, GitHub. Automate deployment of data pipelines and applications using Bash, PowerShell, or Azure CLI, Terraform, Helm Chats etc. Experienced in leveraging Azure AI Search, MongoDB, Elasticsearch or other hybrid/vector stores for content analysis and indexing, with a focus on creating advanced RAG (Retrieval Augmented Generation) applications. Proficiency in building IoT data pipelines, encompassing real-time data ingestion, transformation, security, scalability, and seamless integration with IoT platforms. Design, develop, and monitor streaming data applications using Kafka and related technologies.

Ready to make your mark? Join us on this exhilarating journey, where you'll be a vital part of our AI revolution. Let's transform the future together!

Related Jobs

View all jobs

Legal Recruitment Consultant

Cost Consultant

Recruitment Consultant

Recruitment Consultant

Senior QC Analyst

Senior Operational Analyst

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs UK 2025: 50 Companies Hiring Now

Bookmark this guide—refreshed every quarter—so you always know who’s really expanding their data‑science teams. Budgets for predictive analytics, GenAI pilots & real‑time decision engines keep climbing in 2025. The UK’s National AI Strategy, tax relief for R&D & a sharp rise in cloud adoption mean employers need applied scientists, ML engineers, experiment designers, causal‑inference specialists & analytics leaders—right now. Below you’ll find 50 organisations that have advertised UK‑based data‑science vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the kind of employer—& culture—that suits you. For every company you’ll see: Main UK hub Example live or recent vacancy Why it’s worth a look (tech stack, mission, culture) Search any employer on DataScience‑Jobs.co.uk to view current ads, or set up a free alert so fresh openings land straight in your inbox.

Return-to-Work Pathways: Relaunch Your Data Science Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like stepping into a whole new world—especially in a dynamic field like data science. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s data science sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve gained and provide mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for data science talent in the UK Leverage your organisational, communication and analytical skills in data science roles Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to data science Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to data science Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as a data analyst, machine learning engineer, data visualisation specialist or data science manager, this article will map out the steps and resources you need to reignite your data science career.

LinkedIn Profile Checklist for Data Science Jobs: 10 Tweaks to Elevate Recruiter Engagement

Data science recruiters often sift through dozens of profiles to find candidates skilled in Python, machine learning, statistical modelling and data visualisation—sometimes before roles even open. A generic LinkedIn profile won’t suffice in this data-driven era. This step-by-step LinkedIn for data science jobs checklist outlines ten targeted tweaks to elevate recruiter engagement. Whether you’re an aspiring junior data scientist, a specialist in MLOps, or a seasoned analytics leader, these optimisations will sharpen your profile’s search relevance and demonstrate your analytical impact.