Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Geospatial Data Scientist

Syngenta
City of London
1 week ago
Create job alert
Company Description

Syngenta Group, a global leader in agricultural technology and innovation, employs 60,000 people across more than 100 countries to transform agriculture through tailor‑made solutions for farmers, society, and our planet. Our diverse portfolio encompasses seeds, crop protection, nutrition products, agronomic solutions, and digital services, all designed to help farmers produce healthy food, feed, fiber, and fuel while conserving natural resources and protecting the environment. Our mission is to address critical challenges such as climate change and food security through sustainable practices and cutting‑edge solutions, while safeguarding the planet's resources.


Job Description

The Geospatial Data Scientist will leverage advanced geospatial analytics, machine learning, and remote sensing expertise to transform complex agricultural and earth observation data into actionable insights that drive innovation in Syngenta's Computational Agronomy Department. This role will develop cutting‑edge models and algorithms that enable data‑informed agricultural decision‑making, supporting Syngenta's mission to improve global food security and sustainable farming practices.


Working within cross‑functional teams, the Geospatial Data Scientist will bridge technical expertise with agricultural knowledge to create scalable, data‑driven solutions for modern agricultural challenges.


Accountabilities

  • Develop and implement advanced geospatial and machine learning models to analyze agricultural datasets (satellite imagery, drone data, IoT sensors) and extract meaningful patterns.
  • Design, build, and maintain scalable, cloud‑enabled large data pipelines for cleaning, transforming, and integrating diverse geospatial data sources.
  • Perform statistical analysis and data mining to uncover spatial and temporal trends that inform agricultural management strategies.
  • Engineer innovative features from remote sensing data to enhance model accuracy and performance.
  • Deliver high‑quality, documented code for geospatial data processing using Python and relevant libraries.
  • Translate analytical results into practical recommendations for agronomists, growers, and decision‑makers.
  • Stay current with advancements in geospatial technologies, remote sensing, and machine learning to maintain technical leadership.
  • Contribute to technical reports, scientific publications, and presentations to share research outcomes.
  • Collaborate closely with interdisciplinary teams, including agronomists, data scientists, and software engineers.

Qualifications
Critical Knowledge & Experience

  • Master’s degree in Geographic Information Science, Remote Sensing, Computer Science, Data Science, or a related field with a strong focus on geospatial analysis.
  • 5+ years of experience in satellite and geospatial data analysis and modeling.
  • Proficiency in Python programming, with experience in geospatial libraries such as GeoPandas, Rasterio, and related tools.
  • Expertise in machine learning for earth observation applications (e.g., image classification, object detection, time series analysis).
  • Experience with geospatial foundation models.
  • Experience with version control systems (e.g., Git) and collaborative software development practices.
  • Experience leveraging generative AI tools to optimize workflows, automate tasks, and enhance productivity in geospatial analysis and data science projects.

Skills

  • Excellent written and verbal communication skills in English.
  • Strong analytical and problem‑solving skills, with the ability to explain complex technical concepts to non‑technical audiences.

Nice to have

  • PhD in a relevant field.
  • Familiarity with agronomy concepts and agricultural systems.
  • Expertise in deep learning techniques.
  • Experience with cloud‑based geospatial processing and big data technologies (e.g., Google Earth Engine, Spark).

Additional Information

Location: Remote working is possible within Spain.


Portfolio submission: Please provide examples of relevant geospatial data science projects.


What we offer?

  • Extensive benefits package including a generous pension scheme, bonus scheme, private medical & life insurance.
  • Flexible working arrangements.
  • We offer a position which contributes to valuable and impactful work in a stimulating and international environment.
  • Learning culture (Together we Grow) and wide range of training options.

Equal Opportunity

Syngenta is an Equal Opportunity Employer and does not discriminate in recruitment, hiring, training, promotion, or any other employment practices for reasons of race, color, religion, gender, national origin, age, sexual orientation, marital or veteran status, disability, or any other legally protected status.


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Data Engineer (UK)

Senior Risk Modelling Data Scientist

Senior Risk Modelling Data Scientist

Senior Risk Modelling Data Scientist

Senior Risk Modelling Data Scientist

Senior Risk Modelling Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.