Senior Data Visualization Operational Lead

PowerToFly
Glasgow
3 weeks ago
Create job alert

We’re seeking someone as a Senior Data Visualization operational lead to join our existing Business Intelligence operations team. The BI team manages and supports several Data applications and infrastructure at Morgan Stanley. These include analytics and virtualization systems like Power BI, Business Objects and Tableau.


In the Technology division, we leverage innovation to build the connections and capabilities that power our Firm, enabling our clients and colleagues to redefine markets and shape the future of our communities.


This is a Data & Analytics Operational lead position at VP level, which is part of the job family responsible for providing specialist data analysis and expertise that drive decision‑making and business insights as well as crafting data pipelines, implementing data models, and optimizing data processes for improved data accuracy and accessibility, including applying machine learning and AI‑based techniques.


Since 1935, Morgan Stanley is known as a global leader in financial services, continuously evolving and innovating to better serve our clients and our communities in more than 40 countries around the world.


What you’ll do in the role:

  • Provide global support for multiple enterprise data visualization and business analytics platforms.
  • Develop and implement operational efficiencies and automation practices that support the organization’s long‑term vision.
  • Drive cross‑functional collaboration and knowledge sharing within the Business analytics support functions.
  • Represent the data engineering function in leadership meetings and strategic discussions.
  • Manage relationships with external partners, vendors, and other key stakeholders.
  • Create a culture of accountability, excellence, and continuous improvement within the teams.
  • Mentor and develop talent within the Business Intelligence operational organization.

What you’ll bring to the role

  • System administration skills with Windows and Unix/Linux
  • Scripting of operational administration tasks in one or more languages like Python, PowerShell etc…
  • Knowledge of SQL language
  • Relational database experience (DB2, Snowflake, Sybase etc.)
  • Strong troubleshooting and problem‑solving skills
  • Experience in incident, problem and change management.
  • Effective oral and written communication skills and interpersonal skills as well as the ability to work well in a team environment.
  • Be available for weekend and on‑call work.
  • SRE and DevOps skills and familiarity with modern observability stack (Splunk/Grafana)
  • Bachelor’s degree in computer science, Data Analytics, or a related field, or equivalent experience.
  • Extensive experience in building and scaling data platforms and solutions.
  • Strategic mindset to drive innovation and continuous improvement in data engineering practices.
  • Proficient in data architecture design and implementation for complex business needs.
  • Leadership skills to manage multiple teams, projects, and stakeholders.
  • Ability to collaborate with cross functional teams and stakeholders to drive data driven solutions.
  • Proven track record of delivering high‑impact data projects on time and within budget.

Skills Desired:

  • Understand Microsoft Azure Cloud.
  • Experience working with or supporting Business Intelligence applications such as Tableau, PowerBI, Business Object, Qlikview is a plus.

#LI‑LM1


WHAT YOU CAN EXPECT FROM MORGAN STANLEY:

We are committed to maintaining the first‑class service and high standard of excellence that have defined Morgan Stanley for over 89 years. Our values – putting clients first, doing the right thing, leading with exceptional ideas, committing to diversity and inclusion, and giving back – aren’t just beliefs, they guide the decisions we make every day to do what’s best for our clients, communities and more than 80,000 employees in 1,200 offices across 42 countries. At Morgan Stanley, you’ll find an opportunity to work alongside the best and the brightest, in an environment where you are supported and empowered. Our teams are relentless collaborators and creative thinkers, fueled by their diverse backgrounds and experiences. We are proud to support our employees and their families at every point along their work‑life journey, offering some of the most attractive and comprehensive employee benefits and perks in the industry. There’s also ample opportunity to move about the business for those who show passion and grit in their work.


To learn more about our offices across the globe, please copy and paste https://www.morganstanley.com/about-us/global-offices into your browser.


Certified Persons Regulatory Requirements:

If this role is deemed a Certified role and may require the role holder to hold mandatory regulatory qualifications or the minimum qualifications to meet internal company benchmarks.


Flexible work statement

Interested in flexible working opportunities? Morgan Stanley empowers employees to have greater freedom of choice through flexible working arrangements. Speak to our recruitment team to find out more.


Morgan Stanley is an equal opportunities employer. We work to provide a supportive and inclusive environment where all individuals can maximize their full potential. Our skilled and creative workforce is comprised of individuals drawn from a broad cross section of the global communities in which we operate and who reflect a variety of backgrounds, talents, perspectives, and experiences. Our strong commitment to a culture of inclusion is evident through our constant focus on recruiting, developing, and advancing individuals based on their skills and talents.


#J-18808-Ljbffr

Related Jobs

View all jobs

VP-Level Data Visualization & Analytics Ops Lead

Senior Data Analyst — Data Strategy & Visualisation (Hybrid)

Senior Data Scientist - Payments Operations

Data Analyst

Data Scientist

Senior Data Analytics Manager

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.