Senior Data Scientist

AstraZeneca
Leeds
3 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist (Generative AI) - RELOCATION TO ABU DHABI

Senior Data Scientist

Senior Data Scientist (Generative AI) - RELOCATION TO ABU DHABI

Senior Data Scientist - MLOps

Senior Data Scientist – Oncology

Location – Remote, UK

Duration – 6 months (initially)

Outside IR35


What we do

AstraZeneca is a global, science-driven biopharmaceutical company dedicated to discovering, developing, and delivering innovative, meaningful medicines and healthcare solutions that enrich the lives of patients.


Accountabilities

Support decision-making in clinical design, submission and interpretation by identifying, benchmarking, extracting and presenting back meaningful facts and data via internal and external competitor intelligence information sources

Use techniques such as: text mining and data visualization extracting key relevant information enabling timely and objective clinical study design decision

Maintain a repository of key data, bringing together key historical decisions for wider team to use and refer to

Plan and work independently and take responsibility for specific deliveries within a drug project, and ensure a high level of quality is built into deliverables


Essential Criteria

  • MSc or PhD
  • Experience in conducting literature and database searches
  • Understanding/Exposure of the pharmaceutical drug development process (setting could include, but are not limited to: Clin Ops, Regulatory, Early development, Medical Affairs, Competitive/Regulatory Intelligence)
  • Experience working in oncology data within the pharmaceutical industry
  • Experience in the application of information and knowledge management in a clinical or scientific setting
  • Good written and verbal communication skills including presentation skills and proficiency in communicating complex information to a diverse audience
  • Good organizational skills with the ability to multitask, set priorities and follow a timeline
  • Great attention to detail



We are an equal opportunity employer and value diversity at our company. We do not discriminate on the basis of race, religion, colour, national origin, sex, gender, gender expression, sexual orientation, age, marital status, veteran status, or disability status.

AstraZeneca embraces diversity and equality of opportunity. We are committed to building an inclusive and diverse team representing all backgrounds, with as wide a range of perspectives as possible, and harnessing industry-leading skills. We believe that the more inclusive we are, the better our work will be. We welcome and consider applications to join our team from all qualified candidates, regardless of their characteristics. We comply with all applicable laws and regulations on non-discrimination in employment (and recruitment), as well as work authorization and employment eligibility verification requirements.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Data science has become an indispensable cornerstone of modern business, driving decisions across finance, healthcare, e-commerce, manufacturing, and beyond. As organisations scramble to capitalise on the insights their data can offer, data scientists and machine learning (ML) experts find themselves in ever-higher demand. In the UK, which has cultivated a robust ecosystem of tech innovation and academic excellence, data-driven start-ups continue to blossom—fuelled by venture capital, government grants, and a vibrant talent pool. In this Q3 2025 Investment Tracker, we delve into the newly funded UK start-ups making waves in data science. Beyond celebrating their funding milestones, we’ll explore the job opportunities these investments have created for aspiring and seasoned data scientists alike. Whether you’re interested in advanced analytics, NLP (Natural Language Processing), computer vision, or MLOps, these start-ups might just offer the career leap you’ve been waiting for.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.