Senior Data Scientist

Xcede
Southampton
2 days ago
Create job alert

Senior Data Scientist:


If you want a job where you actively shape how a data function operates — and directly define how your own role evolves as the company grows — this is it.

Xcede has started working with a fast-growing leader in their emerging category of continuous AI auditing and independent model oversight. This AI trust & governance company want a senior data scientist to set the technical benchmarks used to assess the performance, reliability, and risk of mission-critical AI systems.


This role brings together bias assessment, robust quantitative analysis, and practical insight into how real-world evaluation processes work. You’ll likely join with deep expertise in one area and build strength across the others over time, giving you the ability to influence how methodologies are designed, outcomes are interpreted, customer guidance is delivered, and product decisions align with a rapidly changing AI accountability environment.


You’ll collaborate closely with technical leadership and those responsible for shaping the platform, contributing across in-depth investigative work, evaluation design, and strategic decision-making. Your work will raise the quality bar for analytical practice, reinforce confidence in their approach, and help define what robust, defensible AI assessment looks like in real-world use.


Requirements:

• A solid academic foundation in a relevant field

• more than five years of senior professional experience

• Strong in Python

• At ease working both in detail and in areas that are not yet fully defined

• Strong communicator

• Works effectively with others while taking clear ownership of outcomes

• Able to interpret details within their broader operational and business context

• Driven by the opportunity to make a meaningful difference through their work

• demonstrated depth across at least 2 of the following areas:

-Hands-on work evaluating and mitigating systematic risk within deployed AI models, including assessment techniques that support transparent and defensible outcomes

- Experience working with people-focused data in decision-making contexts, including evaluating outcomes, assessing differential effects, and supporting evidence-based assessment approaches

- Proven experience applying robust quantitative methods in environments where analytical decisions carry significant risk, with a strong command of statistical reasoning and repeatable analysis practices


If you are interested in this or other Data Scientist positions, please contact Gilad Sabari @ |

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.