Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Data Scientist

Endava
City of London
3 weeks ago
Create job alert
Company Description

Technology is our how. And people are our why. For over two decades, we have been harnessing technology to drive meaningful change. By combining world-class engineering, industry expertise and a people-centric mindset, we consult and partner with leading brands from various industries to create dynamic platforms and intelligent digital experiences that drive innovation and transform businesses. From prototype to real-world impact - be part of a global shift by doing work that matters.

Role Overview

The Lead Data Scientist is responsible for developing and deploying advanced AI/ML models, leveraging statistical techniques, machine learning, and deep learning to extract actionable insights. This role requires strong expertise in Python-based AI/ML development, big data processing, and cloud-based AI platforms (Databricks, Azure ML, AWS SageMaker, GCP Vertex AI).

Key ResponsibilitiesData Exploration & Feature Engineering
  • Perform thorough Exploratory Data Analysis (EDA) and identify key variables, patterns, and anomalies.
  • Engineer and select features for optimal model performance, leveraging domain understanding.
Machine Learning & Statistical Modelling
  • Implement both classical ML methods (regression, clustering, time-series forecasting) and advanced algorithms (XGBoost, LightGBM).
  • Address computer vision, NLP, and generative tasks using PyTorch, TensorFlow, or Transformer-based models.
Model Deployment & MLOps
  • Integrate CI/CD pipelines for ML models using platforms like MLflow, Kubeflow, or SageMaker Pipelines.
  • Monitor model performance over time and manage retraining to mitigate drift.
Business Insights & Decision Support
  • Communicate analytical findings to key stakeholders in clear, actionable terms.
  • Provide data-driven guidance to inform product strategies and business initiatives.
Ethical AI & Governance
  • Ensure compliance with regulations (GDPR) and implement bias mitigation.
  • Employ model explainability methods (SHAP, LIME) and adopt best practices for responsible AI
Qualifications
  • Technical Skills
  • Programming: Python (NumPy, Pandas), R, SQL.
  • ML/DL Frameworks: Scikit-learn, PyTorch, TensorFlow, Hugging Face Transformers.
  • Big Data & Cloud: Databricks, Azure ML, AWS SageMaker, GCP Vertex AI.
  • Automation: MLflow, Kubeflow, Weights & Biases for experiment tracking and deployment.
  • Architectural Competencies
  • Awareness of data pipelines, infrastructure scaling, and cloud-native AI architectures.
  • Alignment of ML solutions with overall data governance and security frameworks.
  • Soft Skills
  • Critical Thinking: Identifies business value in AI/ML opportunities.
  • Communication: Distils complex AI concepts into stakeholder-friendly insights.
  • Leadership: Mentors junior team members and drives innovation in AI.
Additional Information

Discover some of the global benefits that empower our people to become the best version of themselves:

  • Finance: Competitive salary package, share plan, company performance bonuses, value-based recognition awards, referral bonus;
  • Career Development: Career coaching, global career opportunities, non-linear career paths, internal development programmes for management and technical leadership;
  • Learning Opportunities: Complex projects, rotations, internal tech communities, training, certifications, coaching, online learning platforms subscriptions, pass-it-on sessions, workshops, conferences;
  • Work-Life Balance: Hybrid work and flexible working hours, employee assistance programme;
  • Health: Global internal wellbeing programme, access to wellbeing apps;
  • Community: Global internal tech communities, hobby clubs and interest groups, inclusion and diversity programmes, events and celebrations.

At Endava, we're committed to creating an open, inclusive, and respectful environment where everyone feels safe, valued, and empowered to be their best. We welcome applications from people of all backgrounds, experiences, and perspectives-because we know that inclusive teams help us deliver smarter, more innovative solutions for our customers. Hiring decisions are based on merit, skills, qualifications, and potential. If you need adjustments or support during the recruitment process, please let us know.


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist Customer Data

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.