Senior Data Science Consultant - Credit Decisioning

Experian
London
11 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist SME & AI Architect

Senior Data Scientist SME & AI Architect

Senior Data Scientist SME & AI Architect

Senior Data Scientist SME & AI Architect

Senior Data Scientist SME & AI Architect

Job Description

We have a new vacancy for an experiencedSenior Data Science Consultantwithcoding expertise in Python or SASto join our Analytics team, working with our cloud-based Ascend platform You will partner with clients to understand their business, identify what data is required and how clients can best use Experian data models and analytics to improve business outcomes.

Responsibilities include:

  • Design analytics solutions to client's problems in any area of consumer lending and credit risk management, using Experian analytics solutions.
  • Engage in a consultative way with the client, to identify problems and define, design and deliver analytics solutions, with expertise in credit risk modelling and optimisation techniques.
  • Present proposals to clients for analytics solutions, including recommendations.
  • Provide consultancy on the potential 'bigger picture' strategies.
  • Co-ordinate with Experian's Analytics Pre-Sales team to contribute to sales opportunities and support the conversion of sales prospects.


Qualifications

  • Data science experience with expertise in building decisioning or credit risk models using Python or SAS
  • Applied modelling and analytics experience to lead business decisions
  • Expertise in credit risk decisioning.
  • Deep coding knowledge in Python with SAS or R.
  • Good stakeholder management skills.
  • Subject matter expert on the mechanics of consumer lending (risk, data usag, outcomes)
  • Knowledge of Cloud / AWS
  • Product strategy experience desirable but not essential.



Additional Information

Benefits package includes:

  • Hybrid working
  • Great compensation package
  • Core benefits include pension, bupa healthcare, sharesave scheme and more
  • 25 days annual leave with 8 bank holidays and 3 volunteering days. You can purchase additional annual leave.

Our uniqueness is that we celebrate yours. Experian's culture and people are important differentiators. We take our people agenda very seriously and focus on what matters; DEI, work/life balance, development, authenticity, engagement, collaboration, wellness, reward and recognition, volunteering... the list goes on. Experian's people first approach is award winning; Great Place To Work™ in 24 countries, FORTUNE Best Companies to work and Glassdoor Best Places to Work (globally 4.4 Stars) to name a few. Check out Experian Life on social or our Careers Site to understand why.

Experian is proud to be an Equal Opportunity and Affirmative Action employer. Innovation is a critical part of Experian's DNA and practices, and our diverse workforce drives our success. Everyone can succeed at Experian and bring their whole self to work, irrespective of their gender, ethnicity, religion, colour, sexuality, physical ability or age. If you have a disability or special need that requires accommodation, please let us know at the earliest opportunity.

#LI-DSI #LI-Hybrid

Experian Careers - Creating a better tomorrow together

Find out what its like to work for Experian by clicking here

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.