Senior Data Engineer - Scientific AI

McKinsey & Company, Inc.
London
3 weeks ago
Create job alert

Your Growth

You will work with cutting-edge AI teams on research and development topics across our life sciences, global energy and materials, and advanced industries practices, serving as a data engineer/machine learning engineer in a technology development and delivery capacity.

With your expertise in computer science, computer engineering, cloud, and data transformation (ETL & feature engineering), you will help build and shape McKinsey’s scientific AI offering. As a member of McKinsey’s global scientific AI team, you will address industry questions on how AI can be used for therapeutics, chemicals, and materials (including small molecules, proteins, mRNA, polymers, etc.).

Your work will involve delivering distinctive capabilities, data, and machine learning systems through collaboration with client teams, playing a pivotal role in creating and disseminating cutting-edge knowledge and proprietary assets, and building the firm’s reputation in your area of expertise.

Your Impact

You will leverage your expertise in data/machine learning engineering and product development to address complex client problems through part-time staffing, support the development of engineering roadmaps for cell-level initiatives, and transform AI prototypes into deployment-ready solutions.

By working directly with client delivery teams, you will ensure seamless implementation of these solutions. You will translate engineering concepts and design decisions for senior stakeholders, write optimized code to enhance McKinsey’s AI Toolbox, and codify methodologies for future deployment.

Collaborating with multi-disciplinary teams, you will ensure the smooth integration of AI/ML solutions across projects, while also coaching and mentoring junior colleagues.

Your qualifications and skills

  • Master’s degree with 7-8 years of relevant experience or PhD with 5-7 years of relevant experience
  • Experience in research
  • Data Engineering Experience (DE Path)
  • ETL
  • Big Data Experience and Tooling (PySpark, Databricks)
  • Python Testing Frameworks
  • Data Validation and Data Quality Frameworks
  • Data Handling (SQL & NoSQL)
  • Feature Engineering
  • Chunking
  • Document Ingestion
  • Graph Data Structures (Neo4j)
  • CI/CD Pipelines
  • Basic Kubernetes (Manifests, Debugging, Docker, Argo Workflows)
  • MLflow Deployment and Usage
  • Generative AI (GenAI)

#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer - Fabric - £70,000 - London

Senior Data Engineer - Remote - £70k

Senior Data Engineer - DV Cleared

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Tips for Staying Inspired: How Data Science Pros Fuel Creativity and Innovation

Data science sits at the dynamic intersection of statistics, computer science, and domain expertise, driving powerful innovations in industries ranging from healthcare to finance, and from retail to robotics. Yet, the daily reality for many data scientists can be a far cry from starry-eyed talk of AI and machine learning transformations. Instead, it often involves endless data wrangling, model tuning, and scrutiny over metrics. Maintaining a sense of creativity in this environment can be an uphill battle. So, how do successful data scientists continue to dream big and innovate, even when dealing with the nitty-gritty of data pipelines, debugging code, or explaining results to stakeholders? Below, we outline ten practical strategies to help data analysts, machine learning engineers, and research scientists stay inspired and push their ideas further. Whether you’re just starting out or looking to reinvigorate a long-standing career, these pointers can help you find fresh sparks of motivation.

Top 10 Data Science Career Myths Debunked: Key Facts for Aspiring Professionals

Data science has become one of the most sought-after fields in the tech world, promising attractive salaries, cutting-edge projects, and the opportunity to shape decision-making in virtually every industry. From e-commerce recommendation engines to AI-powered medical diagnostics, data scientists are the force behind innovations that drive productivity and improve people’s lives. Yet, despite the demand and glamour often associated with this discipline, data science is also shrouded in misconceptions. Some believe you need a PhD in mathematics or statistics; others assume data science is exclusively about machine learning or coding. At DataScience-Jobs.co.uk, we’ve encountered a wide array of myths that can discourage talented individuals or mislead those exploring a data science career. This article aims to bust the top 10 data science career myths—providing clarity on what data scientists actually do and illuminating the true diversity and inclusiveness of this exciting field. Whether you’re a recent graduate, a professional looking to pivot, or simply curious about data science, read on to discover the reality behind the myths.

Global vs. Local: Comparing the UK Data Science Job Market to International Landscapes

How to evaluate salaries, opportunities, and work culture in data science across the UK, the US, Europe, and Asia Data science has proven to be more than a passing trend; it is now a foundational pillar of modern decision-making in virtually every industry—from healthcare and finance to retail and entertainment. As the volume of data grows exponentially, organisations urgently need professionals who can transform raw information into actionable insights. This high demand has sparked a wave of new opportunities for data scientists worldwide. In this article, we’ll compare the UK data science job market to those in the United States, Europe, and Asia. We’ll explore hiring trends, salary benchmarks, and cultural nuances to help you decide whether to focus your career locally or consider opportunities overseas or in fully remote roles. Whether you’re a fresh graduate looking for your first data science position, an experienced data professional pivoting from analytics, or a software engineer eager to break into machine learning, understanding the global data science landscape can be a game-changer. By the end of this overview, you’ll be better equipped to navigate the expanding world of data science—knowing which skills and certifications matter most, how salaries differ between regions, and what to expect from distinct work cultures. Let’s dive in.