Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Data Engineer – SC Cleared

Farringdon
2 days ago
Create job alert

Senior Data Engineer – SC Cleared
We are seeking a hands-on Senior Data Engineer with deep expertise in building and managing streaming and batch data pipelines. The ideal candidate will have strong experience working with large-scale data systems operating on cloud-based platforms such as AWS, Databricks or Snowflake. This role also involves close collaboration with hyperscalers and data platform vendors to evaluate and document Proofs of Concept (PoCs) for modern data platforms, while effectively engaging with senior stakeholders across the organisation.
Key Responsibilities:

Design, develop, and maintain streaming and batch data pipelines using modern data engineering tools and frameworks.
Work with large volumes of structured and unstructured data, ensuring high performance and scalability.
Collaborate with cloud providers and data platform vendors (e.g., AWS, Microsoft Azure, Databricks, IBM, Snowflake) to conduct PoCs for data platform solutions.
Evaluate PoC outcomes and provide comprehensive documentation including architecture, performance benchmarks, and recommendations.
Engage with key stakeholders including Heads of Architecture, Enterprise Architects, Product Owners, and Security teams to align data platform initiatives with business and technical strategies.Required Experience & Skills:

Proven experience as a Data Engineer with a strong focus on streaming and batch processing.
Hands-on experience with cloud-based data plaforms such as AWS/ Databricks/ IBM/ Snowflake.
Strong programming skills in Python, Scala, or Java.
Experience with data modeling, ETL/ELT processes, and data warehousing.
Experience conducting and documenting PoCs with hyperscalers or data platform vendors.Preferred Qualifications:

Certifications in AWS, Azure, or Databricks.
Experience with Snowflake, IBM DataStage, or other enterprise data tools.
Knowledge of CI/CD pipelines and infrastructure as code (e.g., Terraform, CloudFormation).
Familiarity with data governance frameworks and compliance standards

Related Jobs

View all jobs

Senior Data Engineer ( SC Cleared/ SC Eligible )

Senior Data Engineer ( SC Cleared/ SC Eligible )

Senior Data Engineer ( SC Cleared/ SC Eligible )

Senior Data Engineer ( SC Cleared/ SC Eligible )

Senior Data Engineer

Data Science Engineer- eDV Clearance

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.