Senior Data Engineer - Credit Platform

Lloyds Banking Group
Halifax
6 days ago
Create job alert
Overview

As a Senior Data Engineer you will collaborate with the Data Operations, Software Engineers, Data Scientists, and Business SMEs to design, develop, integrate and test Data Product features on the product roadmaps to meet customer needs.


We keep your data safe. So, we'll only ever ask you to provide confidential or sensitive information once you have formally been invited along to an interview or accepted a verbal offer to join us which is when we run our background checks. We'll always explain what we need and why, with any request coming from a trusted Lloyds Banking Group person. We're focused on creating a values-led culture and are committed to building a workforce which reflects the diversity of the customers and communities we serve. Together we're building a truly inclusive workplace where all of our colleagues have the opportunity to make a real difference.


Responsibilities

  • Manage the development and/or operation of significant aspects of the data management system with guidance from senior colleagues.
  • Highlight shortcomings and suggests improvements in current IT Security processes, systems and procedures within assigned unit and/or discipline.
  • Define, deliver, and adapts specialized products/services to meet customer needs by selecting the best possible approaches available within established systems.
  • Identifies and evaluates complex expertise-led solutions against a range of criteria to find the ones that best meet business needs.
  • Manage the development and/or operation of knowledge management system with guidance from senior colleagues.
  • Coordinate across multiple teams to develop medium-term and/or long-term work schedules that help the organisation achieve its priorities and fulfil its business plans..
  • Identifiy shortcomings, then suggests and implements improvements to existing business practices, while developing and delivering projects or a workstream within the organisation's change management programme with guidance from senior colleagues.
  • Uncover emerging issues and/or needs and identifies potential causes, related issues, key stakeholders and barriers.

About working for us Our focus is to ensure we're inclusive every day, building an organisation that reflects modern society and celebrates diversity in all its forms. We want our people to feel that they belong and can be their best, regardless of background, identity or culture.


Qualifications

  • Proficiency in Python and SQL.
  • Track record in building robust data driven projects.
  • Experience in helping shape data engineering teams and mentoring junior colleagues.

Desirable skills

  • Experience working with AI technologies.

Our focus is to ensure we're inclusive every day, building an organisation that reflects modern society and celebrates diversity in all its forms. We were one of the first major organisations to set goals on diversity in senior roles, create a menopause health package, and a dedicated Working with Cancer initiative. And it's why we especially welcome applications from under-represented groups. We're disability confident. So, if you'd like reasonable adjustments to be made to our recruitment processes, just let us know. We also offer a wide-ranging benefits package, which includes:



  • A generous pension contribution of up to 15%
  • An annual bonus award, subject to Group performance
  • Share schemes including free shares
  • Benefits you can adapt to your lifestyle, such as discounted shopping
  • 30 days' holiday, with bank holidays on top
  • A range of wellbeing initiatives and generous parental leave policies

Want to do amazing work, that's interesting and makes a difference to millions of people? Join our journey. At Lloyds Banking Group, we're driven by a clear purpose; to help Britain prosper. Across the Group, our colleagues are focused on making a difference to customers, businesses and communities. With us you'll have a key role to play in shaping the financial services of the future, whilst the scale and reach of our Group means you'll have many opportunities to learn, grow and develop.


We keep your data safe. So, we'll only ever ask you to provide confidential or sensitive information once you have formally been invited along to an interview or accepted a verbal offer to join us which is when we run our background checks. We'll always explain what we need and why, with any request coming from a trusted Lloyds Banking Group person.


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer (AWS, Airflow, Python)

Senior Data Engineer - Anti-Piracy

Senior Data Engineer

Senior Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Data Science Tools Do You Need to Know to Get a Data Science Job?

If you’re trying to break into data science — or progress your career — it can feel like you are drowning in names: Python, R, TensorFlow, PyTorch, SQL, Spark, AWS, Scikit-learn, Jupyter, Tableau, Power BI…the list just keeps going. With every job advert listing a different combination of tools, many applicants fall into a trap: they try to learn everything. The result? Long tool lists that sound impressive — but little depth to back them up. Here’s the straight-talk version most hiring managers won’t explicitly tell you: 👉 You don’t need to know every data science tool to get hired. 👉 You need to know the right ones — deeply — and know how to use them to solve real problems. Tools matter, but only in service of outcomes. So how many data science tools do you actually need to know to get a job? For most job seekers, the answer is not “27” — it’s more like 8–12, thoughtfully chosen and well understood. This guide explains what employers really value, which tools are core, which are role-specific, and how to focus your toolbox so your CV and interviews shine.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.