Senior Data Engineer

Net Talent
scotland, united kingdom, united kingdom
6 days ago
Create job alert

taff/Lead Data Engineer

Employment Type: Full-Time | Senior Individual Contributor


We working exclusively on an exciting opportunity for aStaff Data Engineerto lead the technical design and implementation of our most critical data infrastructure and products. In this senior-level individual contributor role, you’ll be responsible for designing scalable systems, setting data architecture standards, and solving complex technical challenges that power analytics, data science, and business functions across the company.

You’ll collaborate with engineers, product managers, and business stakeholders to architect performant, reliable, and long-term data solutions that are customer-centric and business-aligned.


What You’ll Do:

  • Design and build scalable, reliable, and high-performance data systems.
  • Define and drive best practices for data modeling, ETL/ELT pipelines, and real-time streaming architectures.
  • Set technical direction and architectural standards across the data platform.
  • Work closely with cross-functional partners to meet evolving business and analytical needs.
  • Own complex technical systems end-to-end, from concept to production.
  • Advocate for engineering excellence and mentor other engineers on the team.


Technical Skills:

  • 8+ yearsof experience in data engineering or a related field, with a focus on building scalable data systems and platforms.
  • Strong expertise with modern data tools and frameworks such asSpark,dbt,Airflow ORKafka,Databricks, andcloud-native services(AWS, GCP, or Azure).
  • Deep understanding ofdata modeling,distributed systems,streaming architectures, andETL/ELT pipelines.
  • Proficiency inSQLand at least one programming language such asPython,Scala, orJava.
  • Demonstrated experience owning and delivering complex systems from architecture through implementation.
  • Excellent communication skills with the ability to explain technical concepts to both technical and non-technical stakeholders.


Preferred Qualifications:

  • Experience designing data platforms that supportanalytics,machine learning, andreal-time operational workloads.
  • Familiarity withdata governance,privacy, andcompliance frameworks(e.g., GDPR, HIPAA).
  • Background incustomer-centricorproduct-drivenindustries such asdigital,eCommerce, orSaaS.
  • Experience withinfrastructure-as-codetools likeTerraformand expertise indata observability and monitoringpractices.


Shortlisting this week....

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer - Microsoft Fabric

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Top 10 Best UK Universities for Data Science Degrees (2025 Guide)

Discover ten of the strongest UK universities for Data Science degrees in 2025. Compare entry requirements, course content, research strength and industry links to choose the right programme for you. Data is the currency of the modern economy, and professionals who can wrangle, model and interpret vast datasets are in demand across every sector—from biotechnology and finance to sport and public policy. UK universities have been at the forefront of statistics, artificial intelligence and large-scale computing for decades, making the country a prime destination for aspiring data scientists. Below, we profile ten institutions whose undergraduate or postgraduate pathways excel in data science. Although league tables vary each year, these universities have a proven record of excellence in teaching, research and industry collaboration.

Veterans in Data Science: A Military‑to‑Civilian Pathway into Analytical Careers

Introduction The UK Government’s National AI Strategy projects that data‑driven innovation could add £630 billion to the economy by 2035. Employers across healthcare, defence, and fintech are scrambling for professionals who can turn raw data into actionable insights. In 2024 alone, job‑tracker Adzuna recorded a 42 % year‑on‑year rise in data‑science vacancies, with average advertised salaries surpassing £65k. For veterans, that talent drought is a golden opportunity. Whether you plotted artillery trajectories, decrypted enemy comms, or managed aircraft engine logs, you have already practised the fundamentals of hypothesis‑driven analysis and statistical rigour. This guide explains how to translate your military experience into civilian data‑science language, leverage Ministry of Defence (MoD) transition programmes, and land a rewarding role building predictive models that solve real‑world problems. Quick Win: Take a peek at our live Junior Data Scientist roles to see who’s hiring this week.

Quantum-Enhanced AI in Data Science: Embracing the Next Frontier

Data science has undergone a staggering transformation in the past decade, evolving from a niche academic discipline into a linchpin of modern industry. Across every sector—finance, healthcare, retail, manufacturing—data scientists have become indispensable, leveraging statistical methods and machine learning to turn raw information into actionable insights. Yet as datasets grow ever larger and machine learning models become more computationally expensive, there are genuine questions about how far current methods can be pushed. Enter quantum computing, a nascent but promising technology grounded in the counterintuitive principles of quantum mechanics. Often dismissed just a few years ago as purely experimental, quantum computing is quickly gaining traction as prototypes evolve into cloud-accessible machines. When paired with artificial intelligence—particularly in the realm of data science—the results could be game-changing. From faster model training and complex optimisation to entirely new forms of data analysis, quantum-enhanced AI stands poised to disrupt established practices and create new opportunities. In this article, we will: Explore how data science has reached its current limits in certain areas, and why classical hardware might no longer suffice. Provide an accessible overview of quantum computing concepts and how they differ from classical systems. Examine the potential of quantum-enhanced AI to solve key data science challenges, from data wrangling to advanced machine learning. Highlight real-world applications, emerging job roles, and the skills you need to thrive in this new landscape. Offer actionable steps for data professionals eager to stay ahead of the curve in a rapidly evolving field. Whether you’re a practising data scientist, a student weighing up your future specialisations, or an executive curious about the next technological leap, read on. The quantum era may be closer than you think, and it promises to radically transform the very fabric of data science.