Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Data Engineer

City of Westminster
18 hours ago
Create job alert

An opportunity has arisen for a Senior Data Engineer to join a well-established biotech company using large-scale genetic data and AI to predict disease risk and advance precision healthcare.

As a Senior Data Engineer, you will be responsible for developing, automating, and optimising scalable data pipelines using modern cloud technologies.

This is a 6-12 month contract based role with hybrid / remote working options offering a salary of £500 - £650 per day (Inside IR35) and benefits.

You Will Be Responsible For:

Designing and implementing cloud-based data architectures using Azure services.
Building robust and scalable data pipelines to support complex, high-volume processing.
Deploying and managing containerised workloads through Kubernetes, Helm, and Docker.
Automating infrastructure using Infrastructure-as-Code tools such as Terraform and Ansible.
Ensuring system reliability through observability, monitoring, and proactive issue resolution.
Collaborating with cross-functional teams to align data solutions with wider business needs.
Supporting the continuous improvement of processes, deployment, and data quality standards.

What We Are Looking For:

Previously worked as a Senior Data Engineer, Data Engineer, Data Platform Engineer, Data Architect, Data Infrastructure Engineer, Cloud Data Engineer, DataOps Engineer, Data Pipeline Engineer, Devops Engineer or in a similar role.
Proven experience with Azure cloud platforms and related architecture.
Highly skilled in Python for data engineering, scripting, and automation.
Strong working knowledge of Kubernetes, Docker, and cloud-native data ecosystems.
Demonstrable experience with Infrastructure as Code tools (Terraform, Ansible).
Hands-on experience with PostgreSQL and familiarity with lakehouse technologies (e.g. Apache Parquet, Delta Tables).
Exposure to Spark, Databricks, and data lake/lakehouse environments.
Understanding of Agile development methods, CI/CD pipelines, GitHub, and automated testing.
Practical experience monitoring live services using tools such as Grafana, Prometheus, or New Relic.

This is an excellent opportunity to play a key role in shaping innovative data solutions within a forward-thinking organisation.

Important Information: We endeavour to process your personal data in a fair and transparent manner. In applying for this role, Additional Resources will be acting in your best interest and may contact you in relation to the role, either by email, phone, or text message. For more information see our Privacy Policy on our website. It is important you are aware of your individual rights and the provisions the company has put in place to protect your data. If you would like further information on the policy or GDPR please contact us.

Additional Resources Ltd is an Employment Business and an Employment Agency as defined within The Conduct of Employment Agencies & Employment Businesses Regulations 2003

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.