Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Data Engineer

Mercuria
London
4 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer - Azure, BI & Data Strategy

Mercuria is a global leader in Physical and Financial Commodity markets. We operate across major trading centres including London, Geneva, Houston, Singapore, Shanghai, and Beijing. Our diversified technology team is spread across key hubs and strategic co-development centres. We focus on delivering multi-asset-class commodity systems with an emphasis on automation, optimization, and innovation.

Role Overview

This is a great opportunity to join the front office technology team as a Senior Data Engineer.

This role will be based in either Geneva or London and the candidate will be expected to work onsite in the office.

This role offers a unique opportunity for an experienced data engineer to leverage their strong software development and data engineering principles. You will help define and enforce our strategic data strategy across the organisation; in order to do this, you will be working closely with multiple development teams across the organisation to understand their pain points and propose robust solutions.

As a senior engineer in the team, you will be conducting multiple proof of concepts using different technical solutions to help us choose the right products we need for different parts of our data landscape.

Key Responsibilities

  1. Design and enforce a robust and scalable enterprise data architecture.
  2. Review and optimise data models and data warehousing systems.
  3. Design, implement, and maintain efficient ETL pipelines for data ingestion and transformation.
  4. Collaborate with business users to help them identify and utilise available data.
  5. Propose the correct tooling to manage data strategically.
  6. Drive innovation by identifying opportunities for optimisation and automation.
  7. Provide technical mentorship and guidance to junior developers and engineers.

Desirable Technical Expertise

  1. Extensive experience with object-oriented programming and software development lifecycle.
  2. Strong expertise in data engineering, including data warehousing, ETL processes, and database design.
  3. Proficient in SQL and experience with various database technologies.
  4. Knowledge of Java and Python, with the ability to leverage both in building scalable solutions.
  5. Experience with cloud platforms like AWS or Azure, particularly in data-related services.
  6. Familiarity with DevOps practices and tools, including CI/CD pipelines.
  7. Background in the commodities or financial services industry is highly advantageous.
  8. Experience with big data technologies and distributed systems is a plus.

Non-Technical Skills

  1. Leadership and collaboration skills, effective with cross-functional teams.
  2. Strong analytical and problem-solving abilities.
  3. Drive for innovation and continuous improvement.
  4. Excellent communication skills for conveying technical concepts to non-technical stakeholders.
  5. Self-motivated with a proactive approach to learning and development.

Seniority level

Mid-Senior level

Employment type

Full-time

Job function

Finance

Industries

Oil and Gas


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.