Senior Data Engineer

Mercuria
London
1 month ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer - Remote Working

Senior Data Scientist

Senior Data Scientist (MLOps)

Company Overview


Mercuria is a global leader in Physical and Financial Commodity markets. We operate across major trading centres including London, Geneva, Houston, Singapore, Shanghai, and Beijing. Our diversified technology team is spread across key hubs and strategic co-development centres. We focus on delivering multi-asset-class commodity systems with an emphasis on automation, optimization, and innovation.


Role Overview


This is a great opportunity to join the front office technology team as a Senior Data Engineer.

This role will be based in either Geneva or London and the candidate will be expected to work onsite in the office.

This role offers a unique opportunity for an experienced data engineer to leverage their strong software development and data engineering principles. You will help define and enforce our strategic data strategy across the organisation; in order to do this, you will be working closely with multiple development teams across the organisation to understand their pain points and propose robust solutions.

As a senior engineer in the team, you will be conducting multiple proof of concepts usings different technical solutions to help us choose the right products we need for different parts of our data landscape.



Key Responsibilities


  • Design and enforce a robust and scalable enterprise data architecture.
  • Review and optimise data models and data warehousing systems.
  • Design, implement, and maintain efficient ETL pipelines for data ingestion and transformation.
  • Collaborate with business users to help them identify and utilise available data.
  • Implement scalable data storage solutions.
  • Propose the correct tooling to manage data strategically.
  • Drive innovation by identifying opportunities for optimisation and automation.
  • Provide technical mentorship and guidance to junior developers and engineers.


Desirable Technical Expertise


  • Extensive experience with object-oriented programming and software development lifecycle.
  • Strong expertise in data engineering, including data warehousing, ETL processes, and database design.
  • Proficient in SQL and experience with various database technologies.
  • Knowledge of Java and Python, with the ability to leverage both in building scalable solutions.
  • Experience with cloud platforms like AWS or Azure, particularly in data-related services.
  • Familiarity with DevOps practices and tools, including CI/CD pipelines.
  • Background in the commodities or financial services industry is highly advantageous.
  • Experience with big data technologies and distributed systems is a plus.


Non-Technical Skills


  • Leadership and collaboration skills, effective with cross-functional teams
  • Strong analytical and problem-solving abilities
  • Drive for innovation and continuous improvement
  • Excellent communication skills for conveying technical concepts to non-technical stakeholders
  • Self-motivated with a proactive approach to learning and development

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Job-Hunting During Economic Uncertainty: Data Science Edition

Data science has become essential for modern businesses, enabling data-driven decisions that enhance efficiency, profitability, and strategic foresight. From predictive analytics in finance to recommendation engines in retail, data scientists sit at the crossroads of statistics, programming, and domain expertise, building models that translate raw information into tangible insights. Yet, when broader economic forces create uncertainty—through market downturns, shifting investor priorities, or internal budget constraints—data science roles can experience increased scrutiny, competition, and extended hiring cycles. Despite these pressures, data-driven approaches remain crucial to organizations looking to weather challenges and find opportunities in volatile environments. Whether you’re refining advanced machine learning techniques, fine-tuning data pipelines, or collaborating with business stakeholders on dashboards, your skill set is often still in demand. The key is adapting your job search strategy and personal branding to cut through the noise when fewer roles may be available. This article explores: Why economic headwinds affect data science hiring. Actionable strategies to stand out in a tighter job market. Ways to emphasize your technical and soft skills effectively. Techniques to maintain focus and resilience despite potential setbacks. How www.datascience-jobs.co.uk can help you secure the ideal data science position. By combining strategic thinking, polished communications, and adaptability, you can land a fulfilling data science role that leverages your expertise—even if the market feels more demanding.

How to Achieve Work-Life Balance in Data Science Jobs: Realistic Strategies and Mental Health Tips

Data science has quickly emerged as one of the most influential fields in the modern workplace, shaping how businesses make critical decisions and expanding our understanding of everything from consumer behaviour to public health trends. As the global demand for data insights continues to rise, companies of all sizes are seeking professionals who can effectively harness analytics and machine learning to drive innovation. Yet, this promise of limitless opportunity comes with significant challenges. Data scientists often grapple with large volumes of complex data, tight project deadlines, cross-functional collaboration, and constant upskilling. Amid the excitement of discovering actionable insights and developing high-performing models, many wonder if it’s truly possible to maintain a healthy work-life balance. With the field evolving at breakneck speed, the intensity of these roles can leave even the most passionate data professionals drained and questioning how to protect their personal well-being. This article delves into the reality of high-intensity data science jobs, offering practical guidance on setting realistic expectations and preserving mental health. We’ll look at common pitfalls like burnout and perpetual “always learning” pressure, while also highlighting proven strategies for boundary-setting and effective time management. Whether you’re a seasoned data architect, an aspiring machine learning engineer, or somewhere in between, you’ll find actionable tips to help you manage your career trajectory without sacrificing your personal life.

From Research Labs to Real-World Insights: How Academic Researchers Can Thrive in Data Science

Over the past decade, the data science revolution has swept across industries—retailers predicting shopping habits, hospitals personalising patient treatments, and finance companies detecting fraud in near-real time. This surge in data-driven decision-making has created a pressing need for specialists capable of extracting meaningful insights from complex datasets. As a result, PhD holders and academic researchers are uniquely positioned to bring high-calibre analytical skills to the commercial realm. But transitioning from academia to data science can seem daunting: Where do you begin? How do you communicate your research background in industry-friendly terms? What new tools should you learn? This comprehensive guide, explores the paths, challenges, and strategies for academics making the leap into data science. You’ll discover how to leverage your scholarly expertise, adopt a commercial mindset, and build a career that transforms raw data into actionable insights—fostering innovations across every sector of the economy.