Senior Data Analyst Water

Manchester
10 months ago
Applications closed

Related Jobs

View all jobs

Senior Consultant Data Analyst

Data Analyst - Energy & Water

Data Analyst - Energy & Water

Energy & Water Data Analyst

Portfolio Revenue & Debt Data Analyst

Portfolio Revenue & Debt Data Analyst - Swindon, Wiltshire

Senior Data Analyst - Water

Salary: circa £50k 

Location: Hybrid – Manchester

Contract: Fixed Term 3 months (with potential extension to 6 months)

The Vacancy

Multitask Personnel are working with a company at the forefront of energy and utility innovation. They own and manage essential energy infrastructure assets that offer smarter energy solutions for all.

Through smart metering, installation, data services, EV charging infrastructure, and the electrification of heat, they are creating a more sustainable future. As they expand their capabilities in managing SMART water meters, we are recruiting a highly skilled Senior Data Analyst to lead the design and development of robust processes, systems, and data strategies that support operational excellence.

If you're passionate about data, thrive in dynamic environments, and want to shape the future of utilities, this is the opportunity for you.

The Role

As the Senior Data Analyst, you will play a pivotal role in driving the success of the company’s SMART water meter project. Your responsibilities will include:

•    Process Development: Defining interfaces, data transfer standards, and end-to-end processes for water meter data between multiple third parties.

•    Data Management: Ensuring data consistency, accuracy, and completeness across external parties.

•    Systems Implementation: Collaborating with IT to define system and data requirements, enabling financial and performance analysis at the asset level.

•    Analysis and Reporting: Creating dashboards, reports, and visualizations to monitor contract performance and data quality.

•    Stakeholder Engagement: Partnering with project managers, operational teams, and IT to translate business challenges into effective solutions.

Key Responsibilities

•    Develop processes to support the ownership, installation, and management of SMART water meters.

•    Lead GAP analysis to identify areas for improvement in current processes and data systems.

•    Design, implement, and monitor data validation processes to maintain data quality.

•    Document and communicate data insights to stakeholders at all levels.

•    Define customer journeys and external interfaces while maintaining GDPR compliance.

•    Support user acceptance testing, training, and smooth project transitions to BAU.

The Ideal Candidate

We are looking for someone with a proven track record in data analysis, process development, and stakeholder collaboration.

•    Background in the metering, water, or energy industries is desirable.

•    Extensive experience in data analysis for large/complex projects or programs.

•    Strong analytical and problem-solving skills, with experience in business process modelling and data analysis.

•    Ability to create comprehensive documentation such as business cases, requirements specifications, and cost/benefit analyses.

•    Proficient in Microsoft Office tools, including Excel, PowerPoint, and Visio.

•    Excellent communication and stakeholder management skills, with leadership capabilities.

•    Familiarity with Agile methodologies, UAT processes, and data security issues.

•    Understanding of the energy industry landscape.

To apply for this role, please send your CV to (url removed)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.