Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Data Analyst - RELOCATION TO ABU DHABI

SoftServe
Sheffield
5 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Analyst

Senior Data Analyst

Senior Data Analyst - Fraud Analytics

Senior Data Analyst - Electronics Engineering Manufacturing

Senior Data Analyst

Senior Data Analyst

Please note: this position requires relocation to Abu Dhabi for a minimum period of 12 months. Project duration: 36 months+. Softserve will support relocation of selected candidates.


WE ARE

SoftServe is a global digital solutions company with headquarters in Austin, Texas, founded in 1993. Our associates are currently working on 2,000+ projects with clients across North America, EMEA, APAC, and LATAM. We are about people who create bold things, make a difference, have fun, and love their work.

Big Data & Analytics Center of Excellence, data consulting and data engineering branch at SoftServe. Starting as a group of three enthusiasts back in 2013, hundreds of Data Engineers and Architects nowadays build Data & Analytics end-to-end solutions from strategy through technical design and PoC to full-scale implementation. We have customers in Healthcare, Finance, Manufacturing, Retail, and Energy domains.

We hold top-level partnership statuses with all the major cloud providers and collaborate with many technology partners like AWS, GCP, Microsoft, Databricks, Snowflake, Confluent, and others.


IF YOU ARE

  • Experienced in data analysis within a healthcare environment for 3–5+ years
  • Skilled in working with large-scale healthcare datasets and generating actionable insights
  • Proficient in SQL and data visualization tools such as Power BI or Tableau
  • Familiar with healthcare metrics, KPIs, and statistical methods used in clinical or operational analysis
  • Detail-oriented with a strong focus on data accuracy, consistency, and compliance with healthcare standards


AND YOU WANT TO

  • Analyze healthcare data to support clinical and operational decision-making
  • Build clear, insightful dashboards and reports tailored to healthcare stakeholders
  • Collaborate with cross-functional teams on AI-driven or analytics-based healthcare initiatives
  • Contribute to improving data validation and standardization processes across healthcare systems


TOGETHER WE WILL

  • Address different business and technology challenges, engage in impactful projects, use top-notch technologies, and drive multiple initiatives as a part of the Center of Excellence
  • Support your technical and personal growth — we have a dedicated career plan for all roles in our company
  • Investigate new technologies, build internal prototypes, and share knowledge with the SoftServe Data Community
  • Upskill with full access to Udemy learning courses
  • Pass professional certifications, encouraged and covered by the company
  • Adopt best practices from experts while working in a team of top-notch engineers and architects
  • Collaborate with world-leading companies and attend professional events


All qualified applicants will receive consideration for employment without regard to race, color, religion, age, sex, national origin, disability, sexual orientation, gender identity/expression, or protected veteran status. SoftServe is an Equal Opportunity Employer.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.