Senior Credit Risk Analyst - Consumer Lending / Loans

Birmingham
3 weeks ago
Create job alert

This rapidly expanding financial services company are seeking a Senior Credit Risk Analyst to join their Consumer Lending function. Working with the Commercial Director you will develop credit risk analytics / scorecard modelling solutions to enhance Credit Scoring & Lending decisioning to optimise and grow their loan portfolio

Client Details

Rapidly expanding financial services company

Description

This rapidly expanding financial services company are seeking a Senior Credit Risk Analyst to join their Consumer Lending function. Working with the Commercial Director you will develop credit risk analytics / scorecard modelling solutions to enhance Credit Scoring & Lending decisioning to optimise and grow their loan portfolio.

Key Responsibilities:

Developing and implementing advanced statistical / scorecard models to predict credit risk, optimise credit scoring, and enhance decision-making/underwriting processes.
Develop and maintain predictive models to assess credit risk and forecast customer behaviour.
Analyse large datasets to identify trends, patterns, and insights that inform business decisions.
Perform data cleaning to ensure high-quality data for analysis,
Conduct A/B testing and other experiments to evaluate the impact of credit strategies and policies.
Develop credit risk models, such as probability of default (PD) using various modelling techniques.
Working independently and presenting findings and recommendations to stakeholders in a clear and concise manner.Key Skills / Experience:

Experience in the Financial Services Industry (Essential)
Experience working with large data sets (Essential)
Proficiency in Python, R, SQL or other programming languages (Essential)
Proficiency in Excel (Essential)
Strong presentation skills, including the ability to translate complex data into understandable insight (Essential)
A great attention to detail and be process-oriented to review, suggest and implement improvements where appropriate. (Essential)
Able to work in a fast paced, changing environment.(Essential)
Degree in relevant subject (Data Science, Statistics, Computer Science, Economics or similar degree) (Preferable)
Experience using Salesforce and data visualisation tools (Preferable)Profile

Experience in the Financial Services Industry (Essential)
Experience working with large data sets (Essential)
Proficiency in Python, R, SQL or other programming languages (Essential)
Proficiency in Excel (Essential)
Strong presentation skills, including the ability to translate complex data into understandable insight (Essential)
A great attention to detail and be process-oriented to review, suggest and implement improvements where appropriate. (Essential)
Able to work in a fast paced, changing environment.(Essential)
Degree in relevant subject (Data Science, Statistics, Computer Science, Economics or similar degree) (Preferable)
Experience using Salesforce and data visualisation tools (Preferable)Job Offer

Opportunity to develop and enhance credit risk modelling & analytics strategy

Opportunity to join a rapidly expanding financial services company

Related Jobs

View all jobs

Senior Credit Data Analyst

Senior Data Engineer - Snowflake & AWS

Senior Data Engineer - MS Fabric - Remote - £70k - £75k

Senior Market Data Analyst

Macro Quantitative Researcher/Trader

Senior Software Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.

Data Science Jobs in the Public Sector: Exploring Opportunities Across GDS, NHS, MOD, and More

Data science has emerged as one of the most influential fields in the 21st century, transforming how organisations make decisions, improve services, and solve complex problems. Nowhere is this impact more visible than in the UK public sector. From the Government Digital Service (GDS) to the National Health Service (NHS) and the Ministry of Defence (MOD), government departments and agencies handle vast amounts of data daily to support the well-being and security of citizens. For data enthusiasts looking to make a meaningful contribution, data science jobs in the public sector can offer rewarding roles that blend innovation, large-scale impact, and societal benefit. In this comprehensive guide, we’ll explore why data science is so pivotal to government, the roles you might find, the skills needed, salary expectations, and tips on how to succeed in a public sector data science career.

Contract vs Permanent Data Science Jobs: Which Pays Better in 2025?

Data science sits at the intersection of statistics, machine learning, and domain expertise, driving crucial business decisions in almost every sector. As UK organisations leverage AI for predictive analytics, customer insights, and automation, data scientists have become some of the most in-demand professionals in the tech job market. By 2025, data scientists with expertise in deep learning, natural language processing (NLP), and MLOps are commanding top-tier compensation packages. However, deciding whether to become a day‑rate contractor, a fixed-term contract (FTC) employee, or a permanent member of an organisation can be challenging. Each path offers a unique blend of earning potential, career progression, and work–life balance. This guide will walk you through the UK data science job market in 2025, examine the differences between these three employment models, present sample take‑home pay scenarios, and offer strategic considerations to help you determine the best fit for your career.