Senior Credit Risk Analyst - Consumer Lending / Loans

Birmingham
4 weeks ago
Create job alert

This rapidly expanding financial services company are seeking a Senior Credit Risk Analyst to join their Consumer Lending function. Working with the Commercial Director you will develop credit risk analytics / scorecard modelling solutions to enhance Credit Scoring & Lending decisioning to optimise and grow their loan portfolio

Client Details

Rapidly expanding financial services company

Description

This rapidly expanding financial services company are seeking a Senior Credit Risk Analyst to join their Consumer Lending function. Working with the Commercial Director you will develop credit risk analytics / scorecard modelling solutions to enhance Credit Scoring & Lending decisioning to optimise and grow their loan portfolio.

Key Responsibilities:

Developing and implementing advanced statistical / scorecard models to predict credit risk, optimise credit scoring, and enhance decision-making/underwriting processes.
Develop and maintain predictive models to assess credit risk and forecast customer behaviour.
Analyse large datasets to identify trends, patterns, and insights that inform business decisions.
Perform data cleaning to ensure high-quality data for analysis,
Conduct A/B testing and other experiments to evaluate the impact of credit strategies and policies.
Develop credit risk models, such as probability of default (PD) using various modelling techniques.
Working independently and presenting findings and recommendations to stakeholders in a clear and concise manner.Key Skills / Experience:

Experience in the Financial Services Industry (Essential)
Experience working with large data sets (Essential)
Proficiency in Python, R, SQL or other programming languages (Essential)
Proficiency in Excel (Essential)
Strong presentation skills, including the ability to translate complex data into understandable insight (Essential)
A great attention to detail and be process-oriented to review, suggest and implement improvements where appropriate. (Essential)
Able to work in a fast paced, changing environment.(Essential)
Degree in relevant subject (Data Science, Statistics, Computer Science, Economics or similar degree) (Preferable)
Experience using Salesforce and data visualisation tools (Preferable)Profile

Experience in the Financial Services Industry (Essential)
Experience working with large data sets (Essential)
Proficiency in Python, R, SQL or other programming languages (Essential)
Proficiency in Excel (Essential)
Strong presentation skills, including the ability to translate complex data into understandable insight (Essential)
A great attention to detail and be process-oriented to review, suggest and implement improvements where appropriate. (Essential)
Able to work in a fast paced, changing environment.(Essential)
Degree in relevant subject (Data Science, Statistics, Computer Science, Economics or similar degree) (Preferable)
Experience using Salesforce and data visualisation tools (Preferable)Job Offer

Opportunity to develop and enhance credit risk modelling & analytics strategy

Opportunity to join a rapidly expanding financial services company

Related Jobs

View all jobs

Quantitative Analyst - Linear Rates

Head of Quantitative Analysis

Head of Quantitative Analysis

Head of Data Science (Credit Risk & Fraud)

Quantitative Python Developer - Fixed Income (Basé à London)

Quantitative Python Developer - Fixed Income (Basé à London)

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.

Data Science Jobs in the Public Sector: Exploring Opportunities Across GDS, NHS, MOD, and More

Data science has emerged as one of the most influential fields in the 21st century, transforming how organisations make decisions, improve services, and solve complex problems. Nowhere is this impact more visible than in the UK public sector. From the Government Digital Service (GDS) to the National Health Service (NHS) and the Ministry of Defence (MOD), government departments and agencies handle vast amounts of data daily to support the well-being and security of citizens. For data enthusiasts looking to make a meaningful contribution, data science jobs in the public sector can offer rewarding roles that blend innovation, large-scale impact, and societal benefit. In this comprehensive guide, we’ll explore why data science is so pivotal to government, the roles you might find, the skills needed, salary expectations, and tips on how to succeed in a public sector data science career.