National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Senior Azure Data Engineer (SC Cleared) - Permanent - London, UK (Basé à London)

Jobleads
London
1 month ago
Applications closed

Related Jobs

View all jobs

Senior Azure Data Engineer - Remote

Senior Azure Data Engineer - Remote

Senior Azure Data Engineer - Remote

Senior Data Engineer (Azure Synapse) - London

Senior Data Engineer

Senior Data Engineer

Job Description

Job Summary:

We are seeking a highly skilled and experienced Senior Data Engineer to join our team and contribute to the development and maintenance of our cutting-edge Azure Databricks platform for economic data. This platform is critical for our Monetary Analysis, Forecasting, and Modelling activities. The Senior Data Engineer will be responsible for building and optimising data pipelines, implementing data transformations, and ensuring data quality and reliability. This role requires a strong understanding of data engineering principles, big data technologies, cloud computing (specifically Azure), and experience working with large datasets.

Key Responsibilities:

Data Pipeline Development & Optimisation:

  • Design, develop, and maintain robust and scalable data pipelines for ingesting, transforming, and loading data from various sources (eg, APIs, databases, financial data providers) into the Azure Databricks platform.
  • Optimise data pipelines for performance, efficiency, and cost-effectiveness.
  • Implement data quality checks and validation rules within data pipelines.

Data Transformation & Processing:

  • Implement complex data transformations using Spark (PySpark or Scala) and other relevant technologies.
  • Develop and maintain data processing logic for cleaning, enriching, and aggregating data.
  • Ensure data consistency and accuracy throughout the data life cycle.

Azure Databricks Implementation:

  • Work extensively with Azure Databricks Unity Catalog, including Delta Lake, Spark SQL, and other relevant services.
  • Implement best practices for Databricks development and deployment.
  • Optimise Databricks workloads for performance and cost.
  • Need to program using SQL, Python, R, YAML and JavaScript.

Data Integration:

  • Integrate data from various sources, including relational databases, APIs, and streaming data sources.
  • Implement data integration patterns and best practices.
  • Work with API developers to ensure seamless data exchange.

Data Quality & Governance:

  • Hands-on experience in using Azure Purview for data quality and data governance.
  • Implement data quality monitoring and alerting processes.
  • Work with data governance teams to ensure compliance with data governance policies and standards.
  • Implement data lineage tracking and metadata management processes.

Collaboration & Communication:

  • Collaborate closely with data scientists, economists, and other technical teams to understand data requirements and translate them into technical solutions.
  • Communicate technical concepts effectively to both technical and non-technical audiences.
  • Participate in code reviews and knowledge sharing sessions.

Automation & DevOps:

  • Implement automation for data pipeline deployments and other data engineering tasks.
  • Work with DevOps teams to implement and build CI/CD pipelines for environmental deployments.
  • Promote and implement DevOps best practices.

Essential Skills & Experience:

  • 10+ years of experience in data engineering, with at least 3+ years of hands-on experience with Azure Databricks.
  • Strong proficiency in Python and Spark (PySpark) or Scala.
  • Deep understanding of data warehousing principles, data modelling techniques, and data integration patterns.
  • Extensive experience with Azure data services, including Azure Data Factory, Azure Blob Storage, and Azure SQL Database.
  • Experience working with large datasets and complex data pipelines.
  • Experience with data architecture design and data pipeline optimization.
  • Proven expertise with Databricks, including hands-on implementation experience and certifications.
  • Experience with SQL and NoSQL databases.
  • Experience with data quality and data governance processes.
  • Experience with version control systems (eg, Git).
  • Experience with Agile development methodologies.
  • Excellent communication, interpersonal, and problem-solving skills.
  • Experience with streaming data technologies (eg, Kafka, Azure Event Hubs).
  • Experience with data visualisation tools (eg, Tableau, Power BI).
  • Experience with DevOps tools and practices (eg, Azure DevOps, Jenkins, Docker, Kubernetes).
  • Experience working in a financial services or economic data environment.
  • Azure certifications related to data engineering (eg, Azure Data Engineer Associate).

#J-18808-Ljbffr

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs UK 2025: 50 Companies Hiring Now

Bookmark this guide—refreshed every quarter—so you always know who’s really expanding their data‑science teams. Budgets for predictive analytics, GenAI pilots & real‑time decision engines keep climbing in 2025. The UK’s National AI Strategy, tax relief for R&D & a sharp rise in cloud adoption mean employers need applied scientists, ML engineers, experiment designers, causal‑inference specialists & analytics leaders—right now. Below you’ll find 50 organisations that have advertised UK‑based data‑science vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the kind of employer—& culture—that suits you. For every company you’ll see: Main UK hub Example live or recent vacancy Why it’s worth a look (tech stack, mission, culture) Search any employer on DataScience‑Jobs.co.uk to view current ads, or set up a free alert so fresh openings land straight in your inbox.

Return-to-Work Pathways: Relaunch Your Data Science Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like stepping into a whole new world—especially in a dynamic field like data science. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s data science sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve gained and provide mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for data science talent in the UK Leverage your organisational, communication and analytical skills in data science roles Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to data science Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to data science Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as a data analyst, machine learning engineer, data visualisation specialist or data science manager, this article will map out the steps and resources you need to reignite your data science career.

LinkedIn Profile Checklist for Data Science Jobs: 10 Tweaks to Elevate Recruiter Engagement

Data science recruiters often sift through dozens of profiles to find candidates skilled in Python, machine learning, statistical modelling and data visualisation—sometimes before roles even open. A generic LinkedIn profile won’t suffice in this data-driven era. This step-by-step LinkedIn for data science jobs checklist outlines ten targeted tweaks to elevate recruiter engagement. Whether you’re an aspiring junior data scientist, a specialist in MLOps, or a seasoned analytics leader, these optimisations will sharpen your profile’s search relevance and demonstrate your analytical impact.