Quantitative Researcher | Trading team

Jump Trading
London
2 days ago
Applications closed

Related Jobs

View all jobs

Data Scientist | Multi-Strat Hedge Fund | London

Data Scientist | Multi-Strat Hedge Fund | London

Python Data Engineer - Hedgefund

Quantitative Developer - Crypto (C++)

Consultant (Quantitative Analyst) | Capital Markets Services | Economic & Financial Consulting

Quantitative Researcher – Trading ML & Forecasting

Jump Trading Group is committed to world class research. We empower exceptional talents in Mathematics, Physics, and Computer Science to seek scientific boundaries, push through them, and apply cutting edge research to global financial markets. Our culture is unique. Constant innovation requires fearlessness, creativity, intellectual honesty, and a relentless competitive streak. We believe in winning together and unlocking unique individual talent by incenting collaboration and mutual respect. At Jump, research outcomes drive more than superior risk adjusted returns. We design, develop, and deploy technologies that change our world, fund start-ups across industries, and partner with leading global research organizations and universities to solve problems.

The quantitative trading teams at Jump Trading probe and examine the global markets, seeking to understand the complexities of various traded products and exchanges. They leverage their impeccable statistical analysis and data mining skills, using the results of their research to make forecasts and develop profitable predictive trading models.

What You'll Do:

Quantitative Researchers collect and analyze tens of thousands of data sets, identify patterns and extract insights into the complexities in financial markets. Researchers lean heavily on statistical analysis, machine learning, and data engineering skills; applying the results of their research to forecasts and predictive trading models. Jump’s Quantitative Researchers are constantly collaborating with other scientists, traders, hardware and software developers, and market facing business teams to push for the best expression of our new ideas. Other duties as assigned or needed.

Skills You’ll Need:

  • Proven success with profitable trading strategies.
  • Strong programming skills in C++/Python in a Linux environment.
  • Working knowledge of forecasting and data mining techniques, such as linear and non-linear regression analysis, neural networks, or support vector machines.
  • Strong experience developing statistical models in a trading environment.
  • Proven success working with large data sets and developing statistical models.
  • Fascinated and interested in advancing machine learning within the trading community.
  • Possess strong familiarity with Python, R or MATLAB along with development skills to support research efforts.
  • Masters or PhD in Statistics, Physics, Mathematics (or related subject).
  • Desire to work within a collaborative, team-driven environment.
  • Reliable and predictable availability

Benefits include:

  • Private Medical, Vision and Dental Insurance
  • Travel Medical Insurance
  • Group Pension Scheme
  • Group Life Assurance and Income Protection Schemes
  • Paid Parental Leave
  • Parking and Cycle Schemes


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.