Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Quantitative Researcher - Experienced

G-Research
London
5 days ago
Create job alert
Overview

Our researchers use the latest scientific techniques and advanced statistical analysis methods to predict movement in global financial markets.

G-Research is a leading quantitative research and technology firm, with offices in London and Dallas. We are proud to employ some of the best people in their field and to nurture their talent in a dynamic, flexible and highly stimulating culture where world-beating ideas are cultivated and rewarded.

Responsibilities
  • Experience working in a sophisticated research environment, undertaking self-directed research in finance, technology or in a tenured academic position
  • A demonstrable track record of impactful research, within one or both of academia and industry
Qualifications
  • A Masters or PhD degree in a highly quantitative subject, such as mathematics, statistics, computer science, physics or engineering
  • Strong programming skills in at least one programming language
Location

This role is based in our new Soho Place office - opened in 2023 - in the heart of Central London and home to our Research Lab.

Benefits
  • Highly competitive compensation plus annual discretionary bonus
  • Lunch provided (via Just Eat for Business) and dedicated barista bar
  • 35 days' annual leave
  • 9% company pension contributions
  • Informal dress code and excellent work/life balance
  • Comprehensive healthcare and life assurance
  • Cycle-to-work scheme
  • Monthly company events


#J-18808-Ljbffr

Related Jobs

View all jobs

Quantitative Researcher

Quantitative Researcher

Quantitative Researcher (Equity)

Quantitative Researcher / PM | Mid-Freq Equities

Quantitative Researcher / PM | Mid-Freq Equities

Quantitative Researcher, Reporting & Insights (SRE/RM Level)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.