Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Quantitative Researcher

Winton
City of London
1 week ago
Create job alert

Winton is a research-based investment management company with a specialist focus on statistical and mathematical inference in financial markets. The firm researches and trades quantitative investment strategies, which are implemented systematically via thousands of securities, spanning the world's major liquid asset classes. Founded in 1997 by David Harding, Winton today manages assets for some of the world’s largest institutional investors.

We employ ambitious professionals who want to work collaboratively at the leading edge of investment management.

We seek a quantitative researcher to join our Investment Management & Research group. You will work as part of a collaborative quant group structure in which you will leverage significant technology and process resources provided by internal teams, implementing and operating our core macro strategies.

Your responsibilities will include:

  • Liaisingwithdataengineeringandtechteamstobuildandimproveinfrastructure

What we are looking for:

  • Strongcommunicationskillswiththemotivationtoworkinalargecollaborativeinvestmentgroupstructure.
Equal Opportunity Workplace

We are proud to be an equal opportunity workplace. We do not discriminate based upon race, religion, color, national origin, sex, sexual orientation, gender identity/expression, age, status as a protected veteran, status as an individual with a disability, or any other applicable legally protected characteristics.

Apply for this job

Please submit your resume/CV and contact information using the application page.


#J-18808-Ljbffr

Related Jobs

View all jobs

Quantitative Researcher, Reporting & Insights (SRE/RM Level)

Quantitative Researcher

Quantitative Researcher (Equity)

Quantitative Researcher / PM | Mid-Freq Equities

Quantitative Researcher (Machine Learning)

Quantitative Researcher (Machine Learning)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.