Quantitative Financial Engineer

Sowelo Consulting sp. z o.o. sp. k.
Bristol
1 week ago
Applications closed

Related Jobs

View all jobs

Quantitative Developer

Quantitative Developer

Full Stack Developer (Python and React) - Quantitative Analytics Team I Greenfield

Python Data Engineer - Systematic Trading - Hedge Fund

Python Data Engineer - Systematic Trading - Hedge Fund

Quantitative Analyst/Researcher - Energy Trading Firm - UK Remote, Doha Qatar Travel

Are you a detail-oriented professional with a passion for Quantitative Finance and Advanced Engineering?

Have you excelled in building financial models or developing algorithmic trading systems?


If so, we have a remarkable opportunity for you! Based in the vibrant city of London, but with the flexibility of a global reach, our client is a leading entity specialized in FinTech solutions and pioneering technology.


We are seeking a highly skilled Quantitative Financial Engineer to join our dynamic team. This specialist will play a critical role in developing, optimizing, and scaling pricing models, execution algorithms, and API-based financial integrations across an extensive range of instruments, including Spot FX, Derivatives, Structured Products, and Futures.


Key Responsibilities

  • Spearhead the development and implementation of financial instruments, including CFDs, futures, structured products, and derivatives.
  • Design sophisticated pricing models and execution strategies to ensure competitive spreads and efficient price discovery.
  • Integrate prime brokers, market data, and liquidity providers into the platform to support diverse product portfolios.
  • Collaborate with trading desks and senior leadership to refine market offerings and optimize risk management.
  • Serve as the lead quantitative expert, troubleshooting execution and pricing anomalies in real-time.
  • Enhance trading infrastructure and oversee the automation of execution algorithms in cooperation with developers.
  • Build and backtest proprietary models, ensuring seamless integration into trading systems.
  • Develop quantitative tools for monitoring market microstructure, trading performance, and overall liquidity dynamics.


Required Qualifications

  • A minimum of 5 years’ experience in roles specializing in Spot FX, Derivatives (Futures, Options, Swaps), Structured Products, and CFDs.
  • Profound expertise in derivatives pricing techniques, quantitative risk models, and algorithmic execution strategies.
  • Fluency in yield curve modeling, stochastic pricing mechanisms, and volatility surface analyses.
  • Demonstrated experience in developing API-based pricing engines and understanding order book dynamics.
  • Background in financial institutions like banks, hedge funds, or brokers in quantitative roles.
  • Proficiency with real-time integration of pricing feeds and automation in quant-driven execution.
  • Advanced programming abilities, ideally in Python.
  • Strong command of English (both written and spoken).


Preferred Qualifications

  • Experience with advanced hedging algorithms and risk control frameworks.
  • Proven background in algorithmic trading system development and market microstructure analytics.


Keys to success:

  • Expertise in SpotFX


Joining us means you'll enjoy:

  • A fully remote work opportunity
  • Flexibility with either B2B or permanent contracts
  • Annual performance-based bonuses


Sounds interesting? Send us your CV by applying to this page!

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced AI in Data Science: Embracing the Next Frontier

Data science has undergone a staggering transformation in the past decade, evolving from a niche academic discipline into a linchpin of modern industry. Across every sector—finance, healthcare, retail, manufacturing—data scientists have become indispensable, leveraging statistical methods and machine learning to turn raw information into actionable insights. Yet as datasets grow ever larger and machine learning models become more computationally expensive, there are genuine questions about how far current methods can be pushed. Enter quantum computing, a nascent but promising technology grounded in the counterintuitive principles of quantum mechanics. Often dismissed just a few years ago as purely experimental, quantum computing is quickly gaining traction as prototypes evolve into cloud-accessible machines. When paired with artificial intelligence—particularly in the realm of data science—the results could be game-changing. From faster model training and complex optimisation to entirely new forms of data analysis, quantum-enhanced AI stands poised to disrupt established practices and create new opportunities. In this article, we will: Explore how data science has reached its current limits in certain areas, and why classical hardware might no longer suffice. Provide an accessible overview of quantum computing concepts and how they differ from classical systems. Examine the potential of quantum-enhanced AI to solve key data science challenges, from data wrangling to advanced machine learning. Highlight real-world applications, emerging job roles, and the skills you need to thrive in this new landscape. Offer actionable steps for data professionals eager to stay ahead of the curve in a rapidly evolving field. Whether you’re a practising data scientist, a student weighing up your future specialisations, or an executive curious about the next technological leap, read on. The quantum era may be closer than you think, and it promises to radically transform the very fabric of data science.

Data Science Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Data science has become an indispensable cornerstone of modern business, driving decisions across finance, healthcare, e-commerce, manufacturing, and beyond. As organisations scramble to capitalise on the insights their data can offer, data scientists and machine learning (ML) experts find themselves in ever-higher demand. In the UK, which has cultivated a robust ecosystem of tech innovation and academic excellence, data-driven start-ups continue to blossom—fuelled by venture capital, government grants, and a vibrant talent pool. In this Q3 2025 Investment Tracker, we delve into the newly funded UK start-ups making waves in data science. Beyond celebrating their funding milestones, we’ll explore the job opportunities these investments have created for aspiring and seasoned data scientists alike. Whether you’re interested in advanced analytics, NLP (Natural Language Processing), computer vision, or MLOps, these start-ups might just offer the career leap you’ve been waiting for.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.