Quantitative Developer, Systematic Equities

Millennium Management LLC
London
11 months ago
Applications closed

Related Jobs

View all jobs

Quantitative Developer - (Python | Equities | Backtesting) Key Skills: Python, Equities, Backtesting

Quantitative Developer - Equities Trading Team - £300k

Quantitative Developer - Equities Trading Team - £300k

Data Scientist | Multi-Strat Hedge Fund | London

Quantitative Developer - Crypto (C++)

Quantitative Developer

Job Description: Quantitative Developer, Systematic Equities

Please send resume submissions to and referenceREQ-19460in the subject line.

Millennium is a top tier global hedge fund with a strong commitment to leveraging market innovations in technology and data to deliver high-quality returns.

A small, collaborative, and entrepreneurial systematic investment team is seeking an experienced developer to join in building critical trading infrastructure. This opportunity provides a dynamic and fast-paced environment with excellent opportunities for career growth.

Location: London

Principal Responsibilities

  1. Partner closely with the Portfolio Manager to develop data engineering and prediction tools primarily for the systematic trading of equities.
  2. Develop software engineering solutions for quantitative research and trading
    • Assist in designing, coding, and maintaining tools for the systematic trading infrastructure of the team.
    • Build and maintain robust data pipelines and databases that ingest and transform large amounts of data.
    • Develop processes that validate the integrity of the data.
  3. Implementation and operation of systems to enable quantitative research (i.e., large scale computation and serialization frameworks)
    • Live operation of such systems, including monitoring and pro-active detection of potential problems and intervention.
  4. Stay current on state-of-the-art technologies and tools including technical libraries, computing environments, and academic research.
  5. Collaborate with the PM and the trading group in a transparent environment, engaging with the whole investment process.

Preferred Technical Skills

  1. Master’s or PhD in Computer Science, Physics, Engineering, Statistics, Applied Mathematics, or related technical field appropriate to a computational background.
  2. Expert in C++.
  3. Advanced programming skills in Python.
  4. Strong Linux-based development.

Preferred Experience

  1. Extremely strong computer science or engineering background with 3+ years of experience.
  2. Approx. 3-4 years of professional experience in a computer science/computational role.
  3. Experience working in a technical environment with DevOps functions (Google Cloud, Airflow, InfluxDB, Grafana).
  4. Design and implementation of front-office systems for quant trading.

Highly Valued Relevant Experience

  1. Knowledge of machine learning and statistical techniques and related libraries.
  2. Experience as a quantitative developer supporting an intraday (or faster) system.
  3. Experience with the development practices of large tech (Google/Meta, etc.) or finance firms.
  4. Experience with financial data.

Target Start Date: As soon as possible

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.