Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Quantitative Developer

G-Research
City of London
1 week ago
Create job alert

We tackle the most complex problems in quantitative finance, by bringing scientific clarity to financial complexity.


From our London HQ, we unite world-class researchers and engineers in an environment that values deep exploration and methodical execution - because the best ideas take time to evolve. Together we’re building a world-class platform to amplify our teams’ most powerful ideas.


As part of our engineering team, you’ll shape the platforms and tools that drive high-impact research - designing systems that scale, accelerate discovery and support innovation across the firm.


Take the next step in your career.


The role

Engineering underpins our continued growth and success, and we are committed to recruiting and developing the world’s best Engineers.


Our Quantitative Developers are the enablers of our success. They work side-by-side with our researchers to realise their ideas in global financial markets. They work at the bleeding-edge with immense compute power at their fingertips to achieve our aim: predicting the future.


The core tech stack is C# and Python, productionised in our own datacentres.


Areas of focus for these teams include:



  • Trading systems – reliable and performant systems able to trade 24/6 for our customers, with real money at stake
  • Modelling – building core capabilities and assisting quant researchers in our cutting edge prediction capabilities
  • Simulation – back-testing frameworks for validating the strategies our researchers produce and for assessing their ongoing performance
  • Research tooling – front-end UX and workflow for our quant researchers
  • Performance and scalability – optimising our trading and research systems to unlock new capabilities

To give a flavour of the work we do, here are some of our recent projects:



  • Low level performance optimisations in our core simulation engine, unlocking the next advances in quant research
  • Experimenting with alternative solvers in a core trade planning system
  • Integrating our high and low frequency systems for more optimal trading
  • Re-architecting systems to provide a seamless path from research to production for machine learning models
  • Enabling large-scale distributed training of machine learning models
  • Contributing back to open source projects

Who are we looking for?

The ideal candidate will:



  • Deliver high-quality, well-engineered software with strong architectural awareness
  • Take end-to-end ownership of solutions, from concept to delivery
  • Demonstrate solid knowledge of algorithms, data structures, and software fundamentals
  • Show interest in quantitative finance and the role of engineering within it
  • Prioritise effectively to deliver measurable business impact
  • Proactively identify and implement scalable improvements
  • Stay ahead of emerging technologies and drive their adoption
  • Apply sound judgment and balance competing approaches
  • Communicate clearly and adapt their style to different audiences
  • Understand others’ needs to deliver mutually beneficial outcomes
  • Collaborate effectively and build strong relationships across the business

Why should you apply?

  • Highly competitive compensation plus annual discretionary bonus
  • Lunch provided (via Just Eat for Business) and dedicated barista bar
  • 35 days’ annual leave
  • 9% company pension contributions
  • Informal dress code and excellent work/life balance
  • Comprehensive healthcare and life assurance
  • Cycle-to-work scheme
  • Monthly company events


#J-18808-Ljbffr

Related Jobs

View all jobs

Quantitative Developer (Python) - Hybrid London - Up To 250k

Quantitative Developer - TradingHub

Quantitative Developer - Selby Jennings

Quantitative Developer - Asset Management - Pharos Resource Partners Ltd

Quantitative Developer

Quantitative Developer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.