Python Data Engineer & Data Scientist

Marylebone
1 month ago
Applications closed

Related Jobs

View all jobs

Python Data Engineer

Senior Data Engineer

Principal Data Engineer

Data Engineer (Databricks Champion)

Data Engineer (Databricks Champion)

Senior Data Engineer, Consultant [Urgent]

About the Company

Our client is striving to become the top provider of data-driven marketing and analytics in the Sports Betting and iGaming sectors. They leverage deep industry knowledge, proprietary technology, and expert media execution to deliver impactful results.

Specialising in cutting-edge acquisition and retention strategies across Meta, Programmatic, PPC, and alternative traffic channels, they excel in regulated, grey, and blackhat advertising methods, particularly for crypto casinos and sportsbooks.

What We Are Recruiting For

We are seeking a Python Data Engineer & Data Scientist to drive data strategy in digital advertising and marketing. This role blends Software Engineering, Data Engineering, Data Visualisation, and Data Science, ensuring seamless data integration. You will develop and maintain data pipelines, API integrations, and processing systems, with a future focus on AI and machine learning (ML). Experience in the gambling industry is preferred, along with a proactive, business-focused mindset. Collaborating with marketing teams and BI specialists, you will deliver insights to optimise decision-making and support AI-driven solutions.

What You Will Be Doing?

  • Data Pipeline Development & Maintenance – Design and optimise ETL/ELT processes, ensuring reliable and scalable data pipelines. Integrate campaign metrics like budgets, CTRs, CPAs, and ROI.

  • API Integration – Build and maintain API connections for platforms like Facebook Ads, Google Ads, and TikTok. Integrate data with BI tools such as Looker Studio, Tableau, and Power BI.

  • AI/ML Exploration & Implementation – Research and prototype AI/ML models for campaign optimisation. Explore tools like GPT and LangChain for automation and insights.

  • System Integration & Automation – Develop automated workflows and trigger actions in advertising systems based on data insights.

  • Collaboration & Best Practices – Work with cross-functional teams, implement software engineering best practices, and ensure data privacy and security compliance.

    What You Will Bring To The Party?

  • Technical Expertise – Proficiency in Python, data processing libraries (Pandas, NumPy), and ETL/ELT pipeline architecture. Strong API integration experience and knowledge of digital marketing metrics.

  • Data & Analytics Skills – Familiarity with BI tools like Looker Studio, Tableau, and Power BI. Understanding of GCP services, data orchestration tools (Apache Beam, Airflow, Prefect), and AI/ML frameworks (PyTorch, TensorFlow, Scikit-learn).

  • AI & Automation – Interest or experience in LLMs (LangChain, GPT) and AI-driven marketing automation. Ability to build and maintain AI/ML pipelines.

  • Software Best Practices – Experience with version control (Git), CI/CD, testing, and documentation. Understanding of AI/ML deployment and monitoring.

  • Soft Skills – Strong problem-solving abilities, a proactive mindset, and excellent communication skills. Ability to collaborate with non-technical teams and work independently in a fast-paced environment.

    What You Will Get In Return?

  • 25 days paid holiday per annum

  • Enrollment into pension scheme

  • Discretionary bonus

  • Hybrid working (3 days in the office)

  • Home office equipment

  • Learning and development budget

  • Regular team socials

  • Potential enrollment into EMI Scheme for employee share options

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.