Product Manager – Artificial Intelligence

Compass Group UK
Birmingham
1 year ago
Applications closed

Related Jobs

View all jobs

Data Scientist-Senior Manager

Informatics Data Science Manager

Data Analytics (Cross Functional) Graduate Job Details | JLR

Data Analytics (Cross Functional) Graduate

Benefit Risk Management Center of Excellence Data Scientist

Benefit Risk Management Center of Excellence Data Scientist

Job Title:Product Manager - Artificial Intelligence

Department:Digital & Technology

Location:Birmingham (minimum of two days a week) Hybrid Role

Reports to:Technology Transformation Director

Budget responsibility:Yes, up to £1m annually

People responsibilities:Yes, leadership of Data Scientist and Dev Ops Engineer

Role Purpose:

The AI Product Manager will drive the strategy, development, and deployment of AI-based products within the organisation. The role is pivotal in ensuring that AI initiatives deliver measurable value to the business, aligning with customer needs and long-term company goals. You will bridge the gap between the technical AI team, stakeholders, and end-users, ensuring smooth execution and successful delivery of AI solutions.

Key Responsibilities:

  • Leadership: Manage and mentor an expanding team of Data Scientist and Dev Ops Engineers, fostering a collaborative and high-performance culture.
  • AI Product Strategy: Define and drive the overall AI product strategy, ensuring alignment with business objectives and customer needs.
  • Stakeholder Management: Interface with business stakeholders and collaborate with cross-functional teams, including engineering, data science, operations, and senior leadership, to prioritise AI initiatives and ensure clear communication.
  • Roadmap Planning: Develop, manage, and communicate the AI product roadmap, balancing short-term deliverables with long-term innovation.
  • Project Management: Oversee the end-to-end lifecycle of AI products, from ideation and design through to development, deployment, and iteration, ensuring timely delivery within scope.
  • Data-Driven Decision Making: Leverage data insights to inform product decisions and measure the success of AI-driven solutions.
  • Partner Collaboration: Work closely with external technology partners, such as Microsoft and AWS, to integrate AI technologies, ensuring seamless collaboration.
  • Compliance and Ethical Standards: Ensure that AI products adhere to industry regulations, company policies, and ethical AI standards.
  • Market and User Research: Understand market trends, customer needs, and business opportunities to drive the development of AI products that solve real-world problems.
  • Performance Monitoring: Define success metrics and KPIs to track the performance of AI products, driving continuous improvement and optimisation.



Key Skills and Experience:

  • Product Management Expertise: Proven experience in product management, ideally in AI, machine learning, or data-driven products.
  • AI & Data Science Knowledge: Strong understanding of AI/ML concepts, including model development, data pipelines, and deployment.
  • Technical Acumen: Ability to collaborate effectively with technical teams, with a solid grasp of cloud platforms (e.g., AWS, Azure), APIs, and AI development processes.
  • Agile Methodologies: Experience managing projects using agile frameworks, including Scrum or Kanban, and tools like Jira or Trello.
  • Problem-Solving: Ability to think critically and solve complex problems by leveraging AI technologies in innovative ways.
  • Collaboration & Communication: Exceptional interpersonal and communication skills, with the ability to liaise between technical and non-technical teams.
  • Data-Driven Mindset: Strong analytical skills with experience using data to inform product decisions, measure outcomes, and optimise processes.



Qualifications:

  • Bachelor’s degree in Computer Science, Data Science, Engineering, Business, or a related field (Master’s degree preferred).
  • Certification in Product Management (e.g., Pragmatic Institute, AIPMM) is a plus.
  • Certifications or courses in AI/ML are beneficial.
  • Experience working with cloud platforms such as AWS, Azure, or GCP.



Personal Attributes:

  • Visionary: A forward-thinker who can envision and articulate how AI can drive business transformation.
  • Leadership: Strong leadership and decision-making skills, able to inspire and align cross-functional teams.
  • Detail-Oriented: Meticulous attention to detail, ensuring high-quality AI product delivery.
  • Adaptability: Ability to thrive in a fast-paced environment, adjusting priorities as needed.
  • Curiosity: A passion for AI, machine learning, and innovation, always eager to learn and apply new knowledge.
  • Resilience: Demonstrates persistence in overcoming challenges and maintaining focus on achieving business objectives.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.