Product Data Analyst | Cambridge | Climate Risk

Cambridge
4 weeks ago
Create job alert

An innovative, fast-growing SaaS company operating at the intersection of climate science, environmental risk, and cutting-edge analytics is looking for a Product Data Analyst to join their team. Following a successful Series B funding round, the company is scaling rapidly and expanding its suite of environmental analytics tools.

This business partners with globally recognized brands and has strong academic foundations, offering deep expertise in climate risk modelling, compliance analytics, and corporate sustainability solutions.

The Role:

As a Product Data Analyst, you will work across cross-functional teams to shape, enhance, and drive the success of the company's environmental analytics platform and internal tooling. You will act as the bridge between product management, engineering, modelling teams, and client solutions — helping to design solutions that enable clients to translate complex environmental data into actionable insights.
You’ll play a crucial role in scaling internal tools and enhancing the platform's capabilities, with a particular focus on business intelligence, reporting, and user-centric solutions.

Key Responsibilities:

Translate complex business requirements into flexible, scalable, and intuitive solutions.
Design and develop interactive reports and dashboards using Power BI.
Identify opportunities for process improvements, streamlining workflows, and scaling solutions.
Work closely with internal and external stakeholders to define product requirements and deliver innovative tools.
Prioritize and manage multiple concurrent projects, ensuring high-quality delivery.
Contribute to design sprints and testing of new product ideas in the market.
About You:

2-5 years of commercial experience in business intelligence, data analytics, or a similar role.
Proven experience building end-to-end BI dashboards (preferably with Power BI).
Ability to translate complex analytics into intuitive, decision-relevant insights.
Strong communication and stakeholder management skills.
Coding experience in statistical languages (e.g., Python, R, Matlab) is highly desirable.
Experience with SQL querying and data modelling would be beneficial.
Exposure to Corporates, Financial Services, or Insurance industries is a plus.
Prior experience engaging directly with clients to gather product requirements is advantageous.
Benefits:

Competitive base salary + annual discretionary bonus
Employer pension contributions
Private medical insurance
Flexible working environment
Commitment to diversity, equity, and inclusion

Related Jobs

View all jobs

Product Data Analyst | Cambridge | Climate Risk

Customer Data Analyst

Head of Data Science and Analytics

PIM Data Analyst

Product Data Scientist

Senior Data Analyst

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.