Principal Data Scientist- CPG

Workable
London
6 months ago
Applications closed

Related Jobs

View all jobs

Principal Data Scientist

Principal Data Scientist

Principal Data Scientist

Principal Data Scientist

Principal Data Scientist - Remote

Principal Data Scientist (FTC - 24 months) (Basé à London)

Tiger Analytics is pioneering what AI and analytics can do to solve some of the toughest problems faced by organizations globally. We develop bespoke solutions powered by data and technology for several Fortune 100 companies. We have offices in multiple cities across the US, UK, India, and Singapore, and a substantial remote global workforce.

We are also market leaders in AI and analytics consulting in the retail & CPG industry with over 40% of our revenues coming from the sector. This is our fastest-growing sector, and we are beefing up our talent in the space.

We are looking for aLead Data Scientistwith a good blend of data analytics background, who holdssolid knowledge of Market Mix Modeling and ROI analytics.quick learner, and has strong coding capabilities to add to our team.

Responsibilities

  • Work on the latest applications of data science to solve business problems in the Marketing analytics team of the CPG space.
  • Effectively communicate the analytics approach and how it will meet and address objectives to business partners.
  • Develop clear, concise, actionable solutions and recommendations for Client's business needs
  • Work with client analytics team to carry out Market Mix Modelling / ROI analytics
  • Undertake hands on work on data analytics, model development and testing and preparing the data files for visualization platforms
  • Undertake business analysis on the data and provide insights
  • Coordinate with decision makers to translate business questions into a verifiable hypothesis and data models
  • Work hands-on across various analytics problems and provide thought leadership on problems
  • Interact with onsite team as well as client on daily/weekly basis to gather requirements/ provide updates
  • Stay connected with external sources of ideas through conferences and community engagements.
  • Support demands from regulators, investor relations, etc., to develop innovative solutions to meet objectives utilizing cutting-edge techniques and tools.

Requirements

  • 8+ years of experience of working with CPG clients or in a CPG company
  • Graduation or Post graduation in Statistics, Mathematics, Management etc.
  • Must have worked with Marketing analytics teams and understand Market Mix Modeling (MMM) work comprehensively. Must have led multiple projects on MMM analytics
  • Experience in pricing and promotion analytics is a plus
  • Must have experience with Databricks
  • Implemented Bayesian regression on python. Exposure to libraries like numpy, pandas, sklearn, pymc3
  • Hands on experience in PowerPoint / Excel is a must
  • Strong logical, analytical, and problem-solving skills
  • Adept at report writing and presenting findings
  • Excellent verbal and written communication skills

Benefits

This position offers an excellent opportunity for significant career development in a fast-growing and challenging entrepreneurial environment with a high degree of individual responsibility.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced AI in Data Science: Embracing the Next Frontier

Data science has undergone a staggering transformation in the past decade, evolving from a niche academic discipline into a linchpin of modern industry. Across every sector—finance, healthcare, retail, manufacturing—data scientists have become indispensable, leveraging statistical methods and machine learning to turn raw information into actionable insights. Yet as datasets grow ever larger and machine learning models become more computationally expensive, there are genuine questions about how far current methods can be pushed. Enter quantum computing, a nascent but promising technology grounded in the counterintuitive principles of quantum mechanics. Often dismissed just a few years ago as purely experimental, quantum computing is quickly gaining traction as prototypes evolve into cloud-accessible machines. When paired with artificial intelligence—particularly in the realm of data science—the results could be game-changing. From faster model training and complex optimisation to entirely new forms of data analysis, quantum-enhanced AI stands poised to disrupt established practices and create new opportunities. In this article, we will: Explore how data science has reached its current limits in certain areas, and why classical hardware might no longer suffice. Provide an accessible overview of quantum computing concepts and how they differ from classical systems. Examine the potential of quantum-enhanced AI to solve key data science challenges, from data wrangling to advanced machine learning. Highlight real-world applications, emerging job roles, and the skills you need to thrive in this new landscape. Offer actionable steps for data professionals eager to stay ahead of the curve in a rapidly evolving field. Whether you’re a practising data scientist, a student weighing up your future specialisations, or an executive curious about the next technological leap, read on. The quantum era may be closer than you think, and it promises to radically transform the very fabric of data science.

Data Science Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Data science has become an indispensable cornerstone of modern business, driving decisions across finance, healthcare, e-commerce, manufacturing, and beyond. As organisations scramble to capitalise on the insights their data can offer, data scientists and machine learning (ML) experts find themselves in ever-higher demand. In the UK, which has cultivated a robust ecosystem of tech innovation and academic excellence, data-driven start-ups continue to blossom—fuelled by venture capital, government grants, and a vibrant talent pool. In this Q3 2025 Investment Tracker, we delve into the newly funded UK start-ups making waves in data science. Beyond celebrating their funding milestones, we’ll explore the job opportunities these investments have created for aspiring and seasoned data scientists alike. Whether you’re interested in advanced analytics, NLP (Natural Language Processing), computer vision, or MLOps, these start-ups might just offer the career leap you’ve been waiting for.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.