Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Principal Data Science & ML Engineering Consultant

EPAM
Newcastle upon Tyne
1 week ago
Create job alert
Overview

As a global leader in digital transformation, we are expanding our Data Practice across Europe to address growing client demand for advanced Data Science and ML engineering services. We are seeking a talented and experienced Principal Data Science & ML Engineering Consultant to join our dynamic team. This role emphasizes building scalable, production-ready ML solutions, optimizing model performance and driving technical innovation across diverse industries.

In this position, you will bridge the gap between data science and software engineering, delivering robust data-driven solutions that empower clients to solve real-world challenges and unlock measurable value.

Responsibilities
  • Collaborate with clients to define their data science and ML strategies, ensuring alignment with business objectives and technical feasibility
  • Lead the design, development, deployment and maintenance of ML models, emphasizing MLOps best practices for scalability and reliability
  • Design and implement data pipelines to process, transform and prepare data for ML workflows
  • Monitor, evaluate and improve model performance, addressing issues like data drift, model drift and latency in production environments
  • Build CI/CD pipelines for seamless integration of ML models into production systems
  • Work with cross-functional teams, including data engineers, software developers and business stakeholders, to ensure the successful implementation of ML solutions
  • Implement AI governance frameworks, ensuring compliance with ethical practices and industry regulations
  • Stay at the forefront of industry trends, emerging ML technologies and innovative tools to continually enhance service offerings
  • Translate complex ML concepts into actionable insights and technical roadmaps for stakeholders at various levels
  • Contribute to client-facing activities, including presentations, workshops and responses to RFPs/RFIs
Qualifications
  • Bachelor's or Master019s degree in Data Science, Statistics, Computer Science, Software Engineering or related fields. A Ph.D. is an advantage
  • Extensive experience in data science, ML engineering or related roles. Experience in leading teams on projects in not required but would be valued
  • Deep understanding of ML lifecycle management, including feature engineering, model selection, hyperparameter tuning, model validation, model evaluation and deployment for inference
  • Hands-on expertise in deploying ML models at scale in production environments (via platforms such as AWS SageMaker or Azure ML), and optimising models for efficient inference using formats like ONNX and TensorRT
  • Proficiency in Python and ML/engineering frameworks such as PyTorch, TensorFlow (including Keras), Hugging Face (Transformers, Datasets) and scikit-learn, etc
  • Experience with MLOps tools, including MLFlow, workflow orchestrators (Airflow, Metaflow, Perfect or similar), and containerisation (Docker)
  • Strong knowledge of cloud platforms like Azure, AWS or GCP for deploying and managing ML models
  • Familiarity with data engineering tools and practices, e.g., distributed computing (e.g., Spark, Ray), cloud-based data platforms (e.g., Databricks) and database management (e.g., SQL)
  • Strong communication skills, capability to present technical concepts to technical and non-technical stakeholders
  • Experience in developing AI applications using large language models (LLMs) and Retrieval-Augmented Generation (RAG) systems (via LangChain, LlamaIndex or custom API-driven approaches)
Benefits
  • EPAM Employee Stock Purchase Plan (ESPP)
  • Protection benefits including life assurance, income protection and critical illness cover
  • Private medical insurance and dental care
  • Employee Assistance Program
  • Competitive group pension plan
  • Cyclescheme, Techscheme and season ticket loans
  • Various perks such as free Wednesday lunch in-office, on-site massages and regular social events
  • Learning and development opportunities including in-house training and coaching, professional certifications, over 22,000 courses on LinkedIn Learning Solutions and much more
  • If otherwise eligible, participation in the discretionary annual bonus program
  • If otherwise eligible and hired into a qualifying level, participation in the discretionary Long-Term Incentive (LTI) Program
  • *All benefits and perks are subject to certain eligibility requirements


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Consultant Data Scientist

Senior Consultant Data Scientist

Principal Data Engineer - GCP

Principal Data Architect

Principal Data Architect

Principal Data Architect

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.