National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Pricing Data Scientist

LinkedIn
Greater London
1 month ago
Applications closed

Related Jobs

View all jobs

Senior Pricing Data Scientist

Senior Pricing Data Scientist

Senior Pricing Data Scientist

Data Scientist/ Technical Pricing

Technical Senior Data Scientist

Pricing Actuary / Data Scientist F/M

A global marketing-data organisation is upgrading the engine that matches millions of survey invitations to the right respondents. Your task: treat the matching pipeline as a full-scale optimisation problem and raise both accuracy and yield.

Responsibilities

  • Model optimisation- refactor and improve existing matching/segmentation models; design objective functions that balance cost, speed and data quality.
  • Experimentation- set up offline metrics and online A/B tests; analyse uplift and iterate quickly.
  • Production delivery- build scalable pipelines in AWS SageMaker (moving to Azure ML); containerise code and hook into CI/CD.
  • Monitoring & tuning- track drift, response quality and spend; implement automated retraining triggers.
  • Collaboration- work with Data Engineering, Product and Ops teams to translate business constraints into mathematical formulations.

Tech stack

Python (pandas, NumPy, scikit-learn, PyTorch/TensorFlow)
SQL (Redshift, Snowflake or similar)
AWS SageMaker → Azure ML migration, with Docker, Git, Terraform, Airflow / ADF
Optional extras: Spark, Databricks, Kubernetes.

What you'll bring

  • 3-5+ years building optimisation or recommendation systems at scale.
  • Strong grasp of mathematical optimisation (e.g., linear/integer programming, meta-heuristics) as well as ML.
  • Hands-on cloud ML experience (AWS or Azure).
  • Proven track record turning prototypes into reliable production services.
  • Clear communication and documentation habits.

Desired Skills and Experience

Experience & skills checklist

3-5 + yrs optimisation/recommender work at production scale (dynamic pricing, yield, marketplace matching).

Mathematical optimisation know-how - LP/MIP, heuristics, constraint tuning, objective-function design.

Python toolbox: pandas, NumPy, scikit-learn, PyTorch/TensorFlow; clean, tested code.

Cloud ML: hands-on with AWS SageMaker plus exposure to Azure ML; Docker, Git, CI/CD, Terraform.

SQL mastery for heavy-duty data wrangling and feature engineering.

Experimentation chops - offline metrics, online A/B test design, uplift analysis.

Production mindset: containerise models, deploy via Airflow/ADF, monitor drift, automate retraining.

Soft skills: clear comms, concise docs, and a collaborative approach with DS, Eng & Product.

Bonus extras: Spark/Databricks, Kubernetes, big-data panel or ad-tech experience.

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs Skills Radar 2026: Emerging Tools, Languages & Platforms to Learn Now

The UK’s data science job market is evolving fast—from forecasting models and AI assistants to real-time decision systems. In 2026, data scientists aren’t just expected to build models—they’re responsible for shaping insights that fuel everything from patient care to predictive banking. Welcome to the Data Science Jobs Skills Radar 2026—your essential annual guide to the languages, tools, and platforms driving demand across the UK. Whether you’re entering the job market or reskilling mid-career, this roadmap helps you prioritise the skills that matter most right now.

How to Find Hidden Data Science Jobs in the UK Using Professional Bodies like the RSS, BCS & More

The data science job market in the UK is thriving—but also increasingly competitive. As organisations in finance, healthcare, retail, government, and tech accelerate digital transformation, the demand for data talent has soared. Yet many of the best data science jobs are never posted publicly. They’re shared behind closed doors—within professional networks, at invite-only events, or through member-only mailing lists and specialist interest groups. These “hidden” roles are often filled through referrals, collaborations, or direct outreach to trusted experts. In this guide, we’ll show you how to unlock these hidden opportunities by engaging with key UK professional bodies such as the Royal Statistical Society (RSS), BCS (The Chartered Institute for IT), and Turing Society, plus communities like PyData and AI UK. You’ll learn how to use directories, CPD events, and networks to move beyond job boards—and into roles where you’re approached, not just applying.

How to Get a Better Data Science Job After a Lay-Off or Redundancy

Redundancy can be tough to face, especially in a competitive field like data science. But it’s important to know: your experience, analytical thinking, and modelling skills are still in demand. Across sectors like healthcare, finance, e-commerce, government and AI startups, UK employers continue to seek data scientists who can deliver value through insight, prediction, and automation. This guide will walk you through how to bounce back from redundancy with purpose and clarity—whether you're a data analyst looking to step up, a mid-level data scientist, or a machine learning specialist seeking a better-aligned opportunity.