PET Data Scientist

TN United Kingdom
London
2 days ago
Create job alert

Job Description:

About you

To be successful in this role, we are looking for candidates to have the following skills and experience:

Essential criteria

  1. First degree in maths, physics, computer science, or other appropriate subject
  2. PhD in maths, physics or computer science applied to medical imaging data, or other appropriate topic
  3. Extensive computing and programming experience (windows, linux, matlab, scripting, Python, PyTorch, TensorFlow, Keras, etc)
  4. Knowledge and experience of PET methodology including data acquisition, image reconstruction, data analysis
  5. Knowledge and experience of statistical, image processing and AI methods relevant to PET data analysis
  6. Knowledge or experience of performing data handling and data analysis for PET clinical research studies

Desirable criteria

  1. Publication track record in developing and using PET data analysis methods including analysis of dynamic data
  2. Publication track record in contributing to PET clinical research studies
  3. Experience in data analysis for novel PET radiopharmaceuticals
  4. Experience in using standard PET data processing tools (E7 tools, PMod etc)
  5. Experience in developing and using AI-based methods for analysis of medical images datasets

Further information

This post is subject to Disclosure and Barring Service and/or Occupational Health clearances. We pride ourselves on being inclusive and welcoming. We embrace diversity and want everyone to feel that they belong and are connected to others in our community. We are committed to working with our staff and unions on these and other issues, to continue to support our people and to develop a diverse and inclusive culture at King's.

We ask all candidates to submit a copy of their CV, and a supporting statement, detailing how they meet the essential criteria listed in the advert. If we receive a strong field of candidates, we may use the desirable criteria to choose our final shortlist, so please include your evidence against these where possible.

Bank or payment details should not be provided when applying for a job. Eurojobs.com is not responsible for any external website content. All applications should be made via the 'Apply now' button.

#J-18808-Ljbffr

Related Jobs

View all jobs

National Account Manager

Director, Data Architecture

Data Engineering Lead - Finance and Master

Data Engineering Lead - Finance and Master

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.