PET Data Scientist

TN United Kingdom
London
3 weeks ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Data Analyst, Category Development

Team Lead - Data Analytics

Job Description:

About you

To be successful in this role, we are looking for candidates to have the following skills and experience:

Essential criteria

  1. First degree in maths, physics, computer science, or other appropriate subject
  2. PhD in maths, physics or computer science applied to medical imaging data, or other appropriate topic
  3. Extensive computing and programming experience (windows, linux, matlab, scripting, Python, PyTorch, TensorFlow, Keras, etc)
  4. Knowledge and experience of PET methodology including data acquisition, image reconstruction, data analysis
  5. Knowledge and experience of statistical, image processing and AI methods relevant to PET data analysis
  6. Knowledge or experience of performing data handling and data analysis for PET clinical research studies

Desirable criteria

  1. Publication track record in developing and using PET data analysis methods including analysis of dynamic data
  2. Publication track record in contributing to PET clinical research studies
  3. Experience in data analysis for novel PET radiopharmaceuticals
  4. Experience in using standard PET data processing tools (E7 tools, PMod etc)
  5. Experience in developing and using AI-based methods for analysis of medical images datasets

Further information

This post is subject to Disclosure and Barring Service and/or Occupational Health clearances. We pride ourselves on being inclusive and welcoming. We embrace diversity and want everyone to feel that they belong and are connected to others in our community. We are committed to working with our staff and unions on these and other issues, to continue to support our people and to develop a diverse and inclusive culture at King's.

We ask all candidates to submit a copy of their CV, and a supporting statement, detailing how they meet the essential criteria listed in the advert. If we receive a strong field of candidates, we may use the desirable criteria to choose our final shortlist, so please include your evidence against these where possible.

Bank or payment details should not be provided when applying for a job. Eurojobs.com is not responsible for any external website content. All applications should be made via the 'Apply now' button.

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Top 10 Best UK Universities for Data Science Degrees (2025 Guide)

Discover ten of the strongest UK universities for Data Science degrees in 2025. Compare entry requirements, course content, research strength and industry links to choose the right programme for you. Data is the currency of the modern economy, and professionals who can wrangle, model and interpret vast datasets are in demand across every sector—from biotechnology and finance to sport and public policy. UK universities have been at the forefront of statistics, artificial intelligence and large-scale computing for decades, making the country a prime destination for aspiring data scientists. Below, we profile ten institutions whose undergraduate or postgraduate pathways excel in data science. Although league tables vary each year, these universities have a proven record of excellence in teaching, research and industry collaboration.

Veterans in Data Science: A Military‑to‑Civilian Pathway into Analytical Careers

Introduction The UK Government’s National AI Strategy projects that data‑driven innovation could add £630 billion to the economy by 2035. Employers across healthcare, defence, and fintech are scrambling for professionals who can turn raw data into actionable insights. In 2024 alone, job‑tracker Adzuna recorded a 42 % year‑on‑year rise in data‑science vacancies, with average advertised salaries surpassing £65k. For veterans, that talent drought is a golden opportunity. Whether you plotted artillery trajectories, decrypted enemy comms, or managed aircraft engine logs, you have already practised the fundamentals of hypothesis‑driven analysis and statistical rigour. This guide explains how to translate your military experience into civilian data‑science language, leverage Ministry of Defence (MoD) transition programmes, and land a rewarding role building predictive models that solve real‑world problems. Quick Win: Take a peek at our live Junior Data Scientist roles to see who’s hiring this week.

Quantum-Enhanced AI in Data Science: Embracing the Next Frontier

Data science has undergone a staggering transformation in the past decade, evolving from a niche academic discipline into a linchpin of modern industry. Across every sector—finance, healthcare, retail, manufacturing—data scientists have become indispensable, leveraging statistical methods and machine learning to turn raw information into actionable insights. Yet as datasets grow ever larger and machine learning models become more computationally expensive, there are genuine questions about how far current methods can be pushed. Enter quantum computing, a nascent but promising technology grounded in the counterintuitive principles of quantum mechanics. Often dismissed just a few years ago as purely experimental, quantum computing is quickly gaining traction as prototypes evolve into cloud-accessible machines. When paired with artificial intelligence—particularly in the realm of data science—the results could be game-changing. From faster model training and complex optimisation to entirely new forms of data analysis, quantum-enhanced AI stands poised to disrupt established practices and create new opportunities. In this article, we will: Explore how data science has reached its current limits in certain areas, and why classical hardware might no longer suffice. Provide an accessible overview of quantum computing concepts and how they differ from classical systems. Examine the potential of quantum-enhanced AI to solve key data science challenges, from data wrangling to advanced machine learning. Highlight real-world applications, emerging job roles, and the skills you need to thrive in this new landscape. Offer actionable steps for data professionals eager to stay ahead of the curve in a rapidly evolving field. Whether you’re a practising data scientist, a student weighing up your future specialisations, or an executive curious about the next technological leap, read on. The quantum era may be closer than you think, and it promises to radically transform the very fabric of data science.