People Data Scientist

WomenTech Network
Newcastle upon Tyne
2 days ago
Create job alert

Join our People Analytics Centre of Excellence and help transform how we understand and leverage workforce data across the business. In this role, you’ll build advanced analytics, machine learning models, and AI-driven solutions that empower leaders to make evidence-based decisions about talent, performance, and the future of work.


This is a hybrid role working 3 days a week in the office and 2 from home.



  • Develop predictive and prescriptive people analytics models (attrition, skills, workforce planning, D&I insights, forecasting).
  • Translate workforce challenges into experiments, insights, and actionable recommendations.
  • Build AI-powered HR solutions, including NLP, generative AI, and LLM applications.
  • Conduct ONA, workforce segmentation, and employee sentiment analysis.
  • Partner with HRIS, engineering, and business teams to design scalable data pipelines and deploy ML/AI models.
  • Create dashboards and visualisations that bring workforce insights to life for leaders.
  • Support evidence-based decision-making across HR and the wider business.

Skills and Requirements

  • Strong proficiency in Python (Pandas, NumPy, Scikit-learn, PyTorch/TensorFlow, and experience with AI frameworks for deep learning and generative models) and SQL.
  • Experience working with HR data sources (Workday, SuccessFactors, Oracle HCM, LinkedIn Talent Insights, etc.) or related workforce datasets.
  • Knowledge of people analytics methodologies such as attrition modelling, pay equity analysis, employee lifetime value, skills inference, or organisational network analysis.
  • Familiarity with big data frameworks (Spark, Databricks, Dask) and cloud platforms (AWS, Azure, GCP).
  • Knowledge of Snowflake and experience integrating with HR and business data.
  • Familiarity with MLOps principles, CI/CD, and deploying ML and AI models in production environments, including monitoring and retraining pipelines.
  • Strong understanding of machine learning algorithms for classification, regression, clustering, and time series forecasting, plus exposure to advanced AI techniques such as natural language processing (NLP), large language models (LLMs), and generative AI.
  • Experience with data visualisation tools (Tableau, Power BI, or Python-based libraries).
  • Excellent problem-solving skills and ability to translate complex technical analyses into clear, actionable insights for non-technical audiences.
  • Familiarity with vector databases, embedding-based retrieval, and prompt engineering to support AI-enabled HR solutions.
  • Understanding of ethical AI principles, bias detection, and responsible AI practices in HR contexts.

Technical / Professional Qualifications

  • Degree in a quantitative discipline (applied mathematics, statistics, computer science, economics, organisational psychology, or related field).
  • Demonstrable experience in exploratory data analysis, feature engineering, and predictive modelling.
  • Experience with Python, Scikit-learn, and PyTorch. Ideally with exposure to PySpark, Snowflake, AWS, and GitHub (MLOps practices).
  • Knowledge of AI model evaluation techniques, including prompt optimisation and performance benchmarking.

Your benefits (Only Applicable for UK Based Roles)

  • Generous bonuses and pension scheme: Up to 8% matched pension contribution plus 2% top-up by Sage.
  • 25 days of paid annual leave with the option to buy up to another 5 days.
  • Paid 5 days yearly to volunteer through our Sage Foundation.
  • Enhanced parental leave.
  • Comprehensive health, dental, and vision coverage.
  • Work away scheme for up to 10 weeks a year.
  • Access to various helpful memberships for finances, health and wellbeing.


#J-18808-Ljbffr

Related Jobs

View all jobs

People Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.