Operational Technology Engineer

Plymouth
1 month ago
Applications closed

Related Jobs

View all jobs

Automation Systems Engineer

Technology Process Engineer

Data Engineering Manager

Senior Data Engineer

SC Cleared - Data Engineer - Python, SQL

Senior Data/Consulting Engineer

As the Operational Technology Engineer you will report to the Operational Technology lead, you will manage the ongoing development and maintenance of the (OT) systems at the Plymouth manufacturing site.

Main responsibilities will include:

  • Conduct OT asset inventory discovery, management, and asset risk assessments.

  • Support network architecture changes in line with OT security programme policy changes.

  • Drive plant initiatives and project specification, risk assessments and policy adherence activities.

  • Implement protocols to ensure accurate OT device recognition and management ensuring to follow OT policy and guidelines.

  • Lead Cyber-risk awareness and security policy training, to enabling the business to maximise system usage benefits while integrating cybersecurity measures to protect data integrity and security.

  • Complete third-party vendor risk assessments, critical patch implementation, application whitelist testing and implementation. Diagnosing root causes of system failures and define and undertake appropriate corrective actions.

  • Co-ordinating OT process/system change management and organise testing or approval of changes. Implementing all change requests using the approved methodology, ensuring the appropriate level of authorisation and documentation.

  • Engage in ongoing educational and self-development activities as required by the role.

  • Provide business and regulatory data reports and relevant information to meet customer needs utilising available Business Intelligence technologies.

  • Work with other business teams to ensure correct usage of the systems.

    About you:

  • First class or upper second-class honours degree from a recognised university specialising in engineering disciplines or relevant experience with HND / HNC.

  • Several years’ experience in a related environment, ideally medical device manufacture or pharmaceutical.

  • Experience and working knowledge of change control processes within a regulated medical device manufacturing environment.

  • Demonstrated experience with networking, software, and control systems in a related environment.

  • Broad demonstrable experience of Enterprise IT systems, networking protocols and hardware with a keen interest in the OT environment and the interface between the IT and Control Systems Engineering disciplines.

  • Demonstrated achievement with software and control systems in a related environment.

  • Ability to read and interpret electrical drawings, network schematics (physical and logical) and floor plans.

  • Ability to process, combine, and analyse large disperse datasets to produce meaningful insights.

  • An understanding of with Allen Bradley, Siemens and Omron PLC systems would be advantageous, but not essential

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Top 10 Best UK Universities for Data Science Degrees (2025 Guide)

Discover ten of the strongest UK universities for Data Science degrees in 2025. Compare entry requirements, course content, research strength and industry links to choose the right programme for you. Data is the currency of the modern economy, and professionals who can wrangle, model and interpret vast datasets are in demand across every sector—from biotechnology and finance to sport and public policy. UK universities have been at the forefront of statistics, artificial intelligence and large-scale computing for decades, making the country a prime destination for aspiring data scientists. Below, we profile ten institutions whose undergraduate or postgraduate pathways excel in data science. Although league tables vary each year, these universities have a proven record of excellence in teaching, research and industry collaboration.

Veterans in Data Science: A Military‑to‑Civilian Pathway into Analytical Careers

Introduction The UK Government’s National AI Strategy projects that data‑driven innovation could add £630 billion to the economy by 2035. Employers across healthcare, defence, and fintech are scrambling for professionals who can turn raw data into actionable insights. In 2024 alone, job‑tracker Adzuna recorded a 42 % year‑on‑year rise in data‑science vacancies, with average advertised salaries surpassing £65k. For veterans, that talent drought is a golden opportunity. Whether you plotted artillery trajectories, decrypted enemy comms, or managed aircraft engine logs, you have already practised the fundamentals of hypothesis‑driven analysis and statistical rigour. This guide explains how to translate your military experience into civilian data‑science language, leverage Ministry of Defence (MoD) transition programmes, and land a rewarding role building predictive models that solve real‑world problems. Quick Win: Take a peek at our live Junior Data Scientist roles to see who’s hiring this week.

Quantum-Enhanced AI in Data Science: Embracing the Next Frontier

Data science has undergone a staggering transformation in the past decade, evolving from a niche academic discipline into a linchpin of modern industry. Across every sector—finance, healthcare, retail, manufacturing—data scientists have become indispensable, leveraging statistical methods and machine learning to turn raw information into actionable insights. Yet as datasets grow ever larger and machine learning models become more computationally expensive, there are genuine questions about how far current methods can be pushed. Enter quantum computing, a nascent but promising technology grounded in the counterintuitive principles of quantum mechanics. Often dismissed just a few years ago as purely experimental, quantum computing is quickly gaining traction as prototypes evolve into cloud-accessible machines. When paired with artificial intelligence—particularly in the realm of data science—the results could be game-changing. From faster model training and complex optimisation to entirely new forms of data analysis, quantum-enhanced AI stands poised to disrupt established practices and create new opportunities. In this article, we will: Explore how data science has reached its current limits in certain areas, and why classical hardware might no longer suffice. Provide an accessible overview of quantum computing concepts and how they differ from classical systems. Examine the potential of quantum-enhanced AI to solve key data science challenges, from data wrangling to advanced machine learning. Highlight real-world applications, emerging job roles, and the skills you need to thrive in this new landscape. Offer actionable steps for data professionals eager to stay ahead of the curve in a rapidly evolving field. Whether you’re a practising data scientist, a student weighing up your future specialisations, or an executive curious about the next technological leap, read on. The quantum era may be closer than you think, and it promises to radically transform the very fabric of data science.