Natural Language Processing (NLP) Engineer

Your Personal AI
Cambridge
3 months ago
Applications closed

Related Jobs

View all jobs

DATA SCIENTIST – NATURAL LANGUAGE PROCESSING

Data Scientist - Core Analytics

Data Scientist

Senior Data Scientist

Principal Data Scientist - Remote (Basé à London)

Quantitative Developer/Research Engineer (Basé à London)

Natural Language Processing (NLP) Engineer at Your Personal AI

Your Personal AI is seeking a talented Natural Language Processing (NLP) Engineer to join our AI Research and Development department. As an NLP Engineer, you will play a key role in developing cutting-edge algorithms and models to enhance our AI technology.

  • Collaborate with a team of researchers and developers to design and implement NLP solutions

  • Utilize machine learning techniques to improve language understanding and processing

  • Conduct experiments and analyze data to optimize NLP algorithms

  • Stay up-to-date with the latest advancements in NLP and AI technologies

If you are passionate about NLP and have a strong background in machine learning and data analysis, we would love to hear from you. Join us at Your Personal AI and be part of a dynamic team that is shaping the future of artificial intelligence.



Job Requirements for Natural Language Processing (NLP) Engineer at Your Personal AI

Thank you for your interest in the NLP Engineer role at Your Personal AI in the AI Research and Development department. To ensure we find the best candidate for this position, please review and include the following job requirements in your job posting:

  • Bachelor's degree in Computer Science, Engineering, or related field

  • Proven experience in developing NLP algorithms and models

  • Familiarity with machine learning techniques and frameworks

  • Proficiency in programming languages such as Python, Java, or C++

  • Strong analytical and problem-solving skills

  • Excellent communication and teamwork abilities

  • Ability to work independently and meet project deadlines

If the job requirements are not met, we kindly ask you to revise the job posting accordingly. Thank you for your attention to this matter.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.