MS Purview Data Governance Analyst

Stackstudio Digital.
Leeds
1 day ago
Create job alert


Role Details
Job Title:MS Purview Data Governance Analyst
Will the role be 100% remote, hybrid or 100% office?Hybrid
If the role is hybrid/office based, specify location:Leeds
Special Working Conditions (travel, weekend, overtime, on call etc.):Some travel or weekend support might be required
Role Description
We are looking for an experienced Data Governance Analyst with 6 8 years of experience to take end-to-end ownership of data cataloging and governance for data migrated from Oracle to Azure Microsoft Fabric. The role will focus on implementing and managing metadata, data classification, lineage, and business glossary using Microsoft Purview, ensuring trusted, discoverable, and compliant data across the Medallion Architecture.
Key Responsibilities (Up to 10, Avoid repetition)
Own and manage enterprise data cataloging in Microsoft Purview for migrated Azure Fabric data assets.
Define and maintain metadata, data classifications, sensitivity labels, and business glossary.
Ensure end-to-end data lineage across Bronze, Silver, and Gold layers.
Partner with data engineering, modelling, and business teams to align governance with analytics needs.
Enforce data governance policies, standards, and controls.
Support data quality, compliance, and audit requirements.
Key Skills / Knowledge / Experience (...

Related Jobs

View all jobs

MS Purview Data Governance Analyst

Data Governance Analyst

Data Governance Manager

Data Governance Manager

Lead Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.