Mid-Level Data Scientists Needed |Financial Services | Guildford Area

Guildford
1 month ago
Applications closed

Related Jobs

View all jobs

Mid-Level Data Scientist role  - Financial Services | Guildford

Electronics Engineer

Advanced Analytics & Reporting Analyst

Campaign Data Analyst

Campaign Data Analyst

Data Engineering Lead - AWS & Snowflake

Mid-Level Data Scientists Needed |Financial Services | Guildford Area

Are you a passionate data scientist with a knack for engineering solutions? Our established financial services client is seeking a talented Mid-Level Data Scientist to join their growing Analytics team at their office near Guildford.

About the Role:

Working in a Data Science role you will also perform some Data Engineering and Analysis tasks. You'll help transform complex financial data into actionable insights that drive business decisions. You'll collaborate with cross-functional teams to develop predictive models using a range of Data Science techniques. They are also planning to implement some Generative AI tools that optimize internal operations. They are still early in their Data Science journey and this will be area they are investing over the next few years so need people who can help shame their Data and AI tools.

Responsibilities:

  • Design, develop and implement predictive models and machine learning algorithms including building Gen-AI tools.

  • Build and maintain data pipelines to support analytical workflows

  • Transform raw financial data into structured formats suitable for analysis

  • Create visualizations and reports to communicate findings to stakeholders

  • Collaborate with business teams to understand requirements and deliver solutions

  • Optimize existing models and processes for improved performance

    Requirements:

  • 3+ years of experience in data science using a range of predictive modelling and Machine Learning techniques

  • Strong programming skills in Python and SQL

  • Experience with data engineering concepts and tools (ETL pipelines, data warehousing – they are using SnowFlake)

  • Knowledge of machine learning libraries and frameworks (e.g., scikit-learn, TensorFlow)

  • Bachelor's degree in Computer Science, Statistics, Mathematics, or related field

    Technical Skills:

  • Data manipulation: Pandas, NumPy

  • Data engineering: Snowflake, Apache Spark, Airflow or similar

  • Database management: SQL, NoSQL databases

  • Visualization: Power BI, Tableau, or equivalent

  • Version control: Git

    Salary: £45,000 - £65,000 DOE + good pension contribution + private medical + 25 days holiday + discretionary bonus

    Join their team and help shape business success through data-driven decision making.

    Location: Guildford area, Surrey Work Model: Hybrid (3 days in office, 2 days remote)

    APPLY TODAY for immediate consideration and interview in the next week

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Top 10 Best UK Universities for Data Science Degrees (2025 Guide)

Discover ten of the strongest UK universities for Data Science degrees in 2025. Compare entry requirements, course content, research strength and industry links to choose the right programme for you. Data is the currency of the modern economy, and professionals who can wrangle, model and interpret vast datasets are in demand across every sector—from biotechnology and finance to sport and public policy. UK universities have been at the forefront of statistics, artificial intelligence and large-scale computing for decades, making the country a prime destination for aspiring data scientists. Below, we profile ten institutions whose undergraduate or postgraduate pathways excel in data science. Although league tables vary each year, these universities have a proven record of excellence in teaching, research and industry collaboration.

Veterans in Data Science: A Military‑to‑Civilian Pathway into Analytical Careers

Introduction The UK Government’s National AI Strategy projects that data‑driven innovation could add £630 billion to the economy by 2035. Employers across healthcare, defence, and fintech are scrambling for professionals who can turn raw data into actionable insights. In 2024 alone, job‑tracker Adzuna recorded a 42 % year‑on‑year rise in data‑science vacancies, with average advertised salaries surpassing £65k. For veterans, that talent drought is a golden opportunity. Whether you plotted artillery trajectories, decrypted enemy comms, or managed aircraft engine logs, you have already practised the fundamentals of hypothesis‑driven analysis and statistical rigour. This guide explains how to translate your military experience into civilian data‑science language, leverage Ministry of Defence (MoD) transition programmes, and land a rewarding role building predictive models that solve real‑world problems. Quick Win: Take a peek at our live Junior Data Scientist roles to see who’s hiring this week.

Quantum-Enhanced AI in Data Science: Embracing the Next Frontier

Data science has undergone a staggering transformation in the past decade, evolving from a niche academic discipline into a linchpin of modern industry. Across every sector—finance, healthcare, retail, manufacturing—data scientists have become indispensable, leveraging statistical methods and machine learning to turn raw information into actionable insights. Yet as datasets grow ever larger and machine learning models become more computationally expensive, there are genuine questions about how far current methods can be pushed. Enter quantum computing, a nascent but promising technology grounded in the counterintuitive principles of quantum mechanics. Often dismissed just a few years ago as purely experimental, quantum computing is quickly gaining traction as prototypes evolve into cloud-accessible machines. When paired with artificial intelligence—particularly in the realm of data science—the results could be game-changing. From faster model training and complex optimisation to entirely new forms of data analysis, quantum-enhanced AI stands poised to disrupt established practices and create new opportunities. In this article, we will: Explore how data science has reached its current limits in certain areas, and why classical hardware might no longer suffice. Provide an accessible overview of quantum computing concepts and how they differ from classical systems. Examine the potential of quantum-enhanced AI to solve key data science challenges, from data wrangling to advanced machine learning. Highlight real-world applications, emerging job roles, and the skills you need to thrive in this new landscape. Offer actionable steps for data professionals eager to stay ahead of the curve in a rapidly evolving field. Whether you’re a practising data scientist, a student weighing up your future specialisations, or an executive curious about the next technological leap, read on. The quantum era may be closer than you think, and it promises to radically transform the very fabric of data science.