Management Accountant

Chippenham
9 months ago
Applications closed

Related Jobs

View all jobs

Client Data Governance and Integrity Lead

Data Quality Improvement Manager

Data Quality Improvement Manager

People Data Analyst

SharePoint M365 Data Analyst

Qlik Data Analytics Team Lead

Artis Accountancy and Finance are pleased to be working with this growing business, who are seeking an experienced and proactive Management Accountant to join their finance team.

Reporting to the Finance Manager, you will play a pivotal role in delivering accurate and timely financial information to support strategic decision-making across the business. You will be responsible for preparing management accounts, budgeting, forecasting, and variance analysis, with a strong focus on driving efficiencies and improving reporting processes.

Key Responsibilities

  • Prepare monthly management accounts with commentary and analysis.
  • Assist with budgeting, forecasting, and cash flow management.
  • Perform variance analysis and provide insights on financial performance.
  • Reconcile balance sheet accounts and ensure data integrity.
  • Support year-end audit and liaise with external auditors.
  • Assist in financial modelling and scenario analysis.
  • Continuously improve financial processes and reporting tools.

    Skills & Experience Required
  • A minimum of 12 months experience in a Management Accounting role.
  • Experience in using accounting software such as Sage 200/50, Xero, QuickBooks, SAP.
  • Advanced Excel skills including pivot tables, VLOOKUPs, and financial modelling.
  • Strong analytical and problem-solving abilities.
  • Excellent attention to detail and organisational skills.
  • Ability to communicate effectively across departments.
  • Any accounting qualifications (e.g., ACCA, CIMA, ACA) are advantageous, however not essential.

    If you are a finance professional looking for a new challenge, we would love to hear from you.

    Artis Recruitment provide specialist recruitment services within HR, Finance, IT, Procurement, Marketing, Customer Contact and Executive Search. By applying to this position, you acknowledge that you have read and accept our Privacy Policy: (url removed) src="(url removed)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Data Science Tools Do You Need to Know to Get a Data Science Job?

If you’re trying to break into data science — or progress your career — it can feel like you are drowning in names: Python, R, TensorFlow, PyTorch, SQL, Spark, AWS, Scikit-learn, Jupyter, Tableau, Power BI…the list just keeps going. With every job advert listing a different combination of tools, many applicants fall into a trap: they try to learn everything. The result? Long tool lists that sound impressive — but little depth to back them up. Here’s the straight-talk version most hiring managers won’t explicitly tell you: 👉 You don’t need to know every data science tool to get hired. 👉 You need to know the right ones — deeply — and know how to use them to solve real problems. Tools matter, but only in service of outcomes. So how many data science tools do you actually need to know to get a job? For most job seekers, the answer is not “27” — it’s more like 8–12, thoughtfully chosen and well understood. This guide explains what employers really value, which tools are core, which are role-specific, and how to focus your toolbox so your CV and interviews shine.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.