Machine Learning Manager

London
2 weeks ago
Create job alert

Job Title: Machine Learning Manager
Location: London, United Kingdom (Hybrid)
Employment Type: Full-time, Permanent
Salary: £100,000 - £115,000 per annum

About the Company:

Our client is a rapidly growing fintech company that is transforming the financial sector through innovative AI-powered solutions. They specialise in providing data-driven insights, risk management tools, and automated financial services to clients across banking, payments, and investment sectors.

Role Overview:

We are seeking a highly skilled and motivated Machine Learning Manager to lead a dynamic team of data scientists and machine learning engineers. You will be responsible for driving the development and deployment of ML models that enhance business processes, improve customer experiences, and deliver measurable impact. As a leader, you will work closely with product, engineering, and business teams to ensure the seamless integration of AI solutions into the company’s fintech products.

Key Responsibilities:

  • Lead and mentor a team of machine learning engineers and data scientists.

  • Foster a culture of innovation, collaboration, and continuous learning.

  • Establish best practices for model development, deployment, and monitoring.

  • Define and execute the company’s machine learning strategy in line with business goals.

  • Identify new opportunities where AI/ML can drive business value and improve customer experience.

  • Design, build, and optimise machine learning models for predictive analytics.

  • Collaborate with product managers, data engineers, and business stakeholders to align ML initiatives with business objectives.

  • Communicate complex technical concepts effectively to non-technical stakeholders.

  • Ensure the timely delivery of high-quality AI solutions.

    Required Skills & Experience:

  • Strong knowledge of machine learning algorithms, statistical modelling, and deep learning techniques.

  • Hands-on experience with Python, SQL, PyTorch, Scikit-learn, and other ML frameworks.

  • Proficiency in working with cloud platforms (AWS, Azure, or GCP) and MLOps tools.

  • Experience with model versioning, deployment, and monitoring in production environments.

  • Proven experience managing and mentoring a high-performing ML team.

  • Passion for staying ahead of ML trends and applying innovations to improve products.

  • Strong analytical and problem-solving abilities with a results-oriented mindset.

    If you’re excited about driving innovation in machine learning and want to be part of a collaborative, fast-paced environment where your work makes a real difference, we’d love to hear from you

Related Jobs

View all jobs

Data & Analytics Manager

Legal Onboarding Specialist

Forecasting Specialist

Data Scientist

Vehicle Technician

Vehicle Tech

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Tips for Staying Inspired: How Data Science Pros Fuel Creativity and Innovation

Data science sits at the dynamic intersection of statistics, computer science, and domain expertise, driving powerful innovations in industries ranging from healthcare to finance, and from retail to robotics. Yet, the daily reality for many data scientists can be a far cry from starry-eyed talk of AI and machine learning transformations. Instead, it often involves endless data wrangling, model tuning, and scrutiny over metrics. Maintaining a sense of creativity in this environment can be an uphill battle. So, how do successful data scientists continue to dream big and innovate, even when dealing with the nitty-gritty of data pipelines, debugging code, or explaining results to stakeholders? Below, we outline ten practical strategies to help data analysts, machine learning engineers, and research scientists stay inspired and push their ideas further. Whether you’re just starting out or looking to reinvigorate a long-standing career, these pointers can help you find fresh sparks of motivation.

Top 10 Data Science Career Myths Debunked: Key Facts for Aspiring Professionals

Data science has become one of the most sought-after fields in the tech world, promising attractive salaries, cutting-edge projects, and the opportunity to shape decision-making in virtually every industry. From e-commerce recommendation engines to AI-powered medical diagnostics, data scientists are the force behind innovations that drive productivity and improve people’s lives. Yet, despite the demand and glamour often associated with this discipline, data science is also shrouded in misconceptions. Some believe you need a PhD in mathematics or statistics; others assume data science is exclusively about machine learning or coding. At DataScience-Jobs.co.uk, we’ve encountered a wide array of myths that can discourage talented individuals or mislead those exploring a data science career. This article aims to bust the top 10 data science career myths—providing clarity on what data scientists actually do and illuminating the true diversity and inclusiveness of this exciting field. Whether you’re a recent graduate, a professional looking to pivot, or simply curious about data science, read on to discover the reality behind the myths.

Global vs. Local: Comparing the UK Data Science Job Market to International Landscapes

How to evaluate salaries, opportunities, and work culture in data science across the UK, the US, Europe, and Asia Data science has proven to be more than a passing trend; it is now a foundational pillar of modern decision-making in virtually every industry—from healthcare and finance to retail and entertainment. As the volume of data grows exponentially, organisations urgently need professionals who can transform raw information into actionable insights. This high demand has sparked a wave of new opportunities for data scientists worldwide. In this article, we’ll compare the UK data science job market to those in the United States, Europe, and Asia. We’ll explore hiring trends, salary benchmarks, and cultural nuances to help you decide whether to focus your career locally or consider opportunities overseas or in fully remote roles. Whether you’re a fresh graduate looking for your first data science position, an experienced data professional pivoting from analytics, or a software engineer eager to break into machine learning, understanding the global data science landscape can be a game-changer. By the end of this overview, you’ll be better equipped to navigate the expanding world of data science—knowing which skills and certifications matter most, how salaries differ between regions, and what to expect from distinct work cultures. Let’s dive in.