Machine Learning Engineer, Video Quality Analysis

Menaalliances
London
3 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Embedded Linux Engineer

Fraud Strategy Quantitative Analyst

Lead Machine Learning Engineer

Digital and IT Intern- Machine Learning

Principal Data Scientist - NLP

Machine Learning Engineer, Video Quality Analysis

London, United Kingdom | Posted on 11/25/2024

We're thrilled to present an incredible career opportunity! We're recruiting on behalf of a renowned multinational company based in the United Kingdom, seeking a Machine Learning Engineer, Video Quality Analysis.

What you’ll do:

As a key contributor, you will help develop innovative solutions by designing and implementing advanced algorithms to detect defects and evaluate overall video quality. This role involves leveraging the latest technologies, including foundational models, transformer-based architectures, masked autoencoders, image processing, image analysis, computer vision, and machine learning. A primary focus will be on optimizing these algorithms to ensure they deliver accurate, efficient, and reliable results in near real-time.

Key responsibilities:

  • Develop detectors using advanced computer vision and machine learning (ML) techniques.
  • Optimize solutions to ensure low latency and cost-effective operation at scale for customers.
  • Apply deep knowledge of the Machine Learning lifecycle, including model training, optimization, experimentation, and maintenance.
  • Leverage core SDE computer science skills combined with a strong understanding of statistics and math to analyze algorithmic performance.

Requirements

BASIC QUALIFICATIONS

  • Experience contributing to the architecture and design (architecture, design patterns, reliability and scaling) of new and current systems.
  • Experience programming with at least one modern language such as Java, C++, or C# including object-oriented design.
  • Master's degree in Machine Learning, Applied Mathematics, Operations Research or a related field, or equivalent work experience.

PREFERRED QUALIFICATIONS

  • Bachelor's degree in computer science or equivalent.
  • Experience with full software development life cycle, including coding standards, code reviews, source control management, build processes, testing, and operations.
  • Experience with developing and deploying Machine Learning Operations (MLOps) at scale.
  • Experience with large scale foundational models and transformer-based architecture (GenAI).

Immigration support:The company provides support for your immigration process to the United Kingdom.

Competitive Salary:Enjoy a competitive salary package reflective of your skills and experience.

Global Experience:Gain international experience by working with a diverse team in a dynamic region.

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Contract vs Permanent Data Science Jobs: Which Pays Better in 2025?

Data science sits at the intersection of statistics, machine learning, and domain expertise, driving crucial business decisions in almost every sector. As UK organisations leverage AI for predictive analytics, customer insights, and automation, data scientists have become some of the most in-demand professionals in the tech job market. By 2025, data scientists with expertise in deep learning, natural language processing (NLP), and MLOps are commanding top-tier compensation packages. However, deciding whether to become a day‑rate contractor, a fixed-term contract (FTC) employee, or a permanent member of an organisation can be challenging. Each path offers a unique blend of earning potential, career progression, and work–life balance. This guide will walk you through the UK data science job market in 2025, examine the differences between these three employment models, present sample take‑home pay scenarios, and offer strategic considerations to help you determine the best fit for your career.

Data Science Jobs for Non‑Technical Professionals: Where Do You Fit In?

Beyond Jupyter Notebooks Ask most people what a data‑science career looks like and they’ll picture Python wizards optimising XGBoost hyper‑parameters. The truth? Britain’s data‑driven firms need storytellers, strategists, ethicists and project leaders every bit as much as they need statisticians. The Open Data Institute’s UK Data Skills Gap 2024 places demand for non‑technical data talent at 42 % of all data‑science vacancies—roles focused on turning model outputs into business value and trustworthy decisions. This guide highlights the fastest‑growing non‑coding roles, the transferable skills many professionals already have, and a 90‑day action plan to land a data‑science job—no pandas required.

McKinsey & Company Data‑Science Jobs in 2025: Your Complete UK Guide to Turning Data into Impact

When CEOs need to unlock billion‑pound efficiencies or launch AI‑first products, they often call McKinsey & Company. What many graduates don’t realise is that behind every famous strategy deck sits a global network of data scientists, engineers and AI practitioners—unified under QuantumBlack, AI by McKinsey. From optimising Formula One pit stops to reducing NHS wait times, McKinsey’s analytics teams turn messy data into operational gold. With the launch of the McKinsey AI Studio in late 2024 and sustained demand for GenAI strategy, the firm is growing its UK analytics headcount faster than ever. The McKinsey careers portal lists 350+ open analytics roles worldwide, over 120 in the UK, spanning data science, machine‑learning engineering, data engineering, product management and AI consulting. Whether you love Python notebooks, Airflow DAGs, or white‑boarding an LLM governance roadmap for a FTSE 100 board, this guide details how to land a McKinsey data‑science job in 2025.