Machine Learning Engineer in Genomics

NLP PEOPLE
London
2 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer( Real time Data Science Applications)

Machine Learning Data Engineer (Basé à London)

AI) Machine Learning Research Engineer

AI Engineer / Data Scientist

Junior Electronics Engineer

AI Engineer / Data Scientist

InstaDeep, founded in 2014, is a pioneering AI company at the forefront of innovation. With strategic offices in major cities worldwide, including London, Paris, Berlin, Tunis, Lagos, Cape Town, Boston, and San Francisco, InstaDeep collaborates with giants like Google DeepMind and prestigious educational institutions like MIT, Stanford, Oxford, UCL, and Imperial College London. We are a Google Cloud Partner and a select NVIDIA Elite Service Delivery Partner. We have been listed among notable players in AI, fast-growing companies, and Europe’s 1000 fastest-growing companies in 2022 by Statista and the Financial Times. Our recent acquisition by BioNTech has further solidified our commitment to leading the industry.

Join us to be a part of the AI revolution!

InstaDeep is currently looking for a new Machine Learning Engineer to join our expanding Genomics team, located in either London or Paris. Our team is primarily dedicated to applied research, with a strong focus on language models. Our goal is to push the boundaries of genomics research by delivering valuable insights and breakthroughs that were previously unattainable.

As a Machine Learning Engineer within the Genomics team, you will play a pivotal role in advancing our mission to accelerate genomics research. Specifically, you will focus on developing cutting-edge AI and deep learning solutions tailored for DNA analysis. Your responsibilities will encompass contributing to our in-house machine-learning codebases and libraries. Your core tasks will involve designing, developing, and optimizing deep learning models, especially language models, with a primary emphasis on enhancing accuracy, efficiency, and scalability on large sequence datasets.

You will be working on a daily basis with expert computational geneticists committed to helping you thoroughly understand the project requirements, and your mission will be to explore potential solutions and implement the necessary strategies to achieve improved and innovative computational performance. Throughout this process, your role will also include the development of effective, modular, and sustainable software solutions and daily interactions with our team of AI researchers.

RESPONSIBILITIES

  1. Contribute to Our In-House Machine Learning Libraries: Develop and actively contribute to our in-house Machine Learning libraries.
  2. Implementing Algorithms and Research Ideas for Genomics Applications: Apply algorithms and research concepts to language models and deep learning techniques for genomics applications.
  3. Promote Good Engineering Practices: Encourage and support the adoption of sound engineering practices when translating research into reusable and maintainable code.
  4. Design and Implement Algorithms for Modern Hardware: Create and deploy algorithms optimized for modern hardware and distributed computing systems, such as CPUs, GPUs, TPUs, and cloud infrastructure.
  5. Effective Reporting and Presentation: Clearly and efficiently communicate experimental results and research findings both internally and externally, both in written and verbal formats.
  6. Collaboration with Cross-Functional Teams: Collaborate closely with cross-functional teams, including computational geneticists and AI researchers, to seamlessly integrate AI solutions into genomics workflows.
  7. Stay Current with AI and Genomics Advancements: Keep abreast of the latest advancements in AI and genomics research. Contribute to scientific publications and explore innovative approaches to address genomics challenges.
  8. Develop Comprehensive Benchmarks: Create robust evaluation metrics and benchmarks for assessing AI model performance. Continuously refine and enhance models based on feedback.
  9. Thorough Documentation: Document your work comprehensively to ensure clear and reproducible results. Contribute to internal knowledge sharing for the benefit of the team.

QUALIFICATIONS

  1. A postgraduate degree in Computer Science, Machine Learning, or a related scientific field.
  2. Proven experience in deep learning, neural networks, and the development of AI models. Strong expertise in language models, particularly in transformers.
  3. Proficiency in programming languages such as Python, along with familiarity with libraries like TensorFlow, PyTorch, or Jax.
  4. While domain knowledge in genomics is not mandatory, a genuine curiosity about genomics data, tools, and databases is highly advantageous.
  5. Strong problem-solving skills and a creative mindset to address complex challenges in genomics research.
  6. Excellent communication skills to facilitate productive collaboration within multidisciplinary teams.
  7. A record of publications in the fields of AI, deep learning, or genomics research is considered a valuable bonus.

Our commitment to our people

We empower individuals to celebrate their uniqueness here at InstaDeep. Our team comes from all walks of life, and we’re proud to continue encouraging and supporting applicants from underrepresented groups across the globe. Our commitment to creating an authentic environment comes from our ability to learn and grow from our diversity, and how better to experience this than by joining our team? We operate on a hybrid work model with guidance to work at the office at least 2 to 3 days per week to encourage close collaboration and innovation. We are continuing to review the situation with the well-being of InstaDeepers at the forefront of our minds.

Right to work: Please note that you will require the legal right to work in the location you are applying for.

Company:

InstaDeep

Qualifications:Language requirements:Specific requirements:Educational level:Level of experience (years):

Senior (5+ years of experience)

Tagged as:Academia,Language Modeling,Machine Learning,Neural Networks,NLP,United Kingdom

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.