Machine Learning Engineer in Genomics

NLP PEOPLE
London
2 weeks ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Research Engineer

AI Research Scientist

Senior Product Manager, AI/ML Platform

Senior Data Scientist

Senior Machine Learning Engineer - Gen AI

InstaDeep, founded in 2014, is a pioneering AI company at the forefront of innovation. With strategic offices in major cities worldwide, including London, Paris, Berlin, Tunis, Lagos, Cape Town, Boston, and San Francisco, InstaDeep collaborates with giants like Google DeepMind and prestigious educational institutions like MIT, Stanford, Oxford, UCL, and Imperial College London. We are a Google Cloud Partner and a select NVIDIA Elite Service Delivery Partner. We have been listed among notable players in AI, fast-growing companies, and Europe’s 1000 fastest-growing companies in 2022 by Statista and the Financial Times. Our recent acquisition by BioNTech has further solidified our commitment to leading the industry.

Join us to be a part of the AI revolution!

InstaDeep is currently looking for a new Machine Learning Engineer to join our expanding Genomics team, located in either London or Paris. Our team is primarily dedicated to applied research, with a strong focus on language models. Our goal is to push the boundaries of genomics research by delivering valuable insights and breakthroughs that were previously unattainable.

As a Machine Learning Engineer within the Genomics team, you will play a pivotal role in advancing our mission to accelerate genomics research. Specifically, you will focus on developing cutting-edge AI and deep learning solutions tailored for DNA analysis. Your responsibilities will encompass contributing to our in-house machine-learning codebases and libraries. Your core tasks will involve designing, developing, and optimizing deep learning models, especially language models, with a primary emphasis on enhancing accuracy, efficiency, and scalability on large sequence datasets.

You will be working on a daily basis with expert computational geneticists committed to helping you thoroughly understand the project requirements, and your mission will be to explore potential solutions and implement the necessary strategies to achieve improved and innovative computational performance. Throughout this process, your role will also include the development of effective, modular, and sustainable software solutions and daily interactions with our team of AI researchers.

RESPONSIBILITIES

  1. Contribute to Our In-House Machine Learning Libraries: Develop and actively contribute to our in-house Machine Learning libraries.
  2. Implementing Algorithms and Research Ideas for Genomics Applications: Apply algorithms and research concepts to language models and deep learning techniques for genomics applications.
  3. Promote Good Engineering Practices: Encourage and support the adoption of sound engineering practices when translating research into reusable and maintainable code.
  4. Design and Implement Algorithms for Modern Hardware: Create and deploy algorithms optimized for modern hardware and distributed computing systems, such as CPUs, GPUs, TPUs, and cloud infrastructure.
  5. Effective Reporting and Presentation: Clearly and efficiently communicate experimental results and research findings both internally and externally, both in written and verbal formats.
  6. Collaboration with Cross-Functional Teams: Collaborate closely with cross-functional teams, including computational geneticists and AI researchers, to seamlessly integrate AI solutions into genomics workflows.
  7. Stay Current with AI and Genomics Advancements: Keep abreast of the latest advancements in AI and genomics research. Contribute to scientific publications and explore innovative approaches to address genomics challenges.
  8. Develop Comprehensive Benchmarks: Create robust evaluation metrics and benchmarks for assessing AI model performance. Continuously refine and enhance models based on feedback.
  9. Thorough Documentation: Document your work comprehensively to ensure clear and reproducible results. Contribute to internal knowledge sharing for the benefit of the team.

QUALIFICATIONS

  1. A postgraduate degree in Computer Science, Machine Learning, or a related scientific field.
  2. Proven experience in deep learning, neural networks, and the development of AI models. Strong expertise in language models, particularly in transformers.
  3. Proficiency in programming languages such as Python, along with familiarity with libraries like TensorFlow, PyTorch, or Jax.
  4. While domain knowledge in genomics is not mandatory, a genuine curiosity about genomics data, tools, and databases is highly advantageous.
  5. Strong problem-solving skills and a creative mindset to address complex challenges in genomics research.
  6. Excellent communication skills to facilitate productive collaboration within multidisciplinary teams.
  7. A record of publications in the fields of AI, deep learning, or genomics research is considered a valuable bonus.

Our commitment to our people

We empower individuals to celebrate their uniqueness here at InstaDeep. Our team comes from all walks of life, and we’re proud to continue encouraging and supporting applicants from underrepresented groups across the globe. Our commitment to creating an authentic environment comes from our ability to learn and grow from our diversity, and how better to experience this than by joining our team? We operate on a hybrid work model with guidance to work at the office at least 2 to 3 days per week to encourage close collaboration and innovation. We are continuing to review the situation with the well-being of InstaDeepers at the forefront of our minds.

Right to work: Please note that you will require the legal right to work in the location you are applying for.

Company:

InstaDeep

Qualifications:Language requirements:Specific requirements:Educational level:Level of experience (years):

Senior (5+ years of experience)

Tagged as:Academia,Language Modeling,Machine Learning,Neural Networks,NLP,United Kingdom

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Tips for Staying Inspired: How Data Science Pros Fuel Creativity and Innovation

Data science sits at the dynamic intersection of statistics, computer science, and domain expertise, driving powerful innovations in industries ranging from healthcare to finance, and from retail to robotics. Yet, the daily reality for many data scientists can be a far cry from starry-eyed talk of AI and machine learning transformations. Instead, it often involves endless data wrangling, model tuning, and scrutiny over metrics. Maintaining a sense of creativity in this environment can be an uphill battle. So, how do successful data scientists continue to dream big and innovate, even when dealing with the nitty-gritty of data pipelines, debugging code, or explaining results to stakeholders? Below, we outline ten practical strategies to help data analysts, machine learning engineers, and research scientists stay inspired and push their ideas further. Whether you’re just starting out or looking to reinvigorate a long-standing career, these pointers can help you find fresh sparks of motivation.

Top 10 Data Science Career Myths Debunked: Key Facts for Aspiring Professionals

Data science has become one of the most sought-after fields in the tech world, promising attractive salaries, cutting-edge projects, and the opportunity to shape decision-making in virtually every industry. From e-commerce recommendation engines to AI-powered medical diagnostics, data scientists are the force behind innovations that drive productivity and improve people’s lives. Yet, despite the demand and glamour often associated with this discipline, data science is also shrouded in misconceptions. Some believe you need a PhD in mathematics or statistics; others assume data science is exclusively about machine learning or coding. At DataScience-Jobs.co.uk, we’ve encountered a wide array of myths that can discourage talented individuals or mislead those exploring a data science career. This article aims to bust the top 10 data science career myths—providing clarity on what data scientists actually do and illuminating the true diversity and inclusiveness of this exciting field. Whether you’re a recent graduate, a professional looking to pivot, or simply curious about data science, read on to discover the reality behind the myths.

Global vs. Local: Comparing the UK Data Science Job Market to International Landscapes

How to evaluate salaries, opportunities, and work culture in data science across the UK, the US, Europe, and Asia Data science has proven to be more than a passing trend; it is now a foundational pillar of modern decision-making in virtually every industry—from healthcare and finance to retail and entertainment. As the volume of data grows exponentially, organisations urgently need professionals who can transform raw information into actionable insights. This high demand has sparked a wave of new opportunities for data scientists worldwide. In this article, we’ll compare the UK data science job market to those in the United States, Europe, and Asia. We’ll explore hiring trends, salary benchmarks, and cultural nuances to help you decide whether to focus your career locally or consider opportunities overseas or in fully remote roles. Whether you’re a fresh graduate looking for your first data science position, an experienced data professional pivoting from analytics, or a software engineer eager to break into machine learning, understanding the global data science landscape can be a game-changer. By the end of this overview, you’ll be better equipped to navigate the expanding world of data science—knowing which skills and certifications matter most, how salaries differ between regions, and what to expect from distinct work cultures. Let’s dive in.