Machine Learning Engineer II, Messaging Optimization

Spotify AB
London
1 year ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer

Data Engineer - (Python, SQL, Machine Learning) - Robotics

Data Engineer - DV Cleared

Full Stack Data Engineer

Full Stack Data Engineer (SC cleared)

Full stack Data Engineer

We're looking for a Machine Learning Engineer II to join our team focusing on messaging optimization. Through our messaging platform, we communicate with users to connect them with valuable audio content and to help the business grow.

Submit your CV and any additional required information after you have read this description by clicking on the application button.Location:LondonJob type:PermanentThe team's vision is to build the machine learning models and infrastructure that offers a fully personalized and ML-optimized experience for listeners throughout their user journey that powers every messaging and conversion campaign at Spotify.Our team is a combination of Machine Learning Engineers, Data Engineers, Backend Engineers, and Data Scientists.What You'll Do:Contribute to designing, building, evaluating, shipping, and refining Spotify’s product by hands-on ML development.Collaborate with a multi-functional agile team spanning user research, design, data science, product management, and engineering to build new product features that advance our mission to connect artists and fans in personalized and relevant ways.Prototype new approaches and productionize solutions at scale for our hundreds of millions of active users.Help drive optimisation, testing, and tooling to improve quality.Be part of an active group of machine learning practitioners in your mission and across Spotify.Who You Are:You have a strong background in machine learning, theory, and practice.You are comfortable explaining the intuition and assumptions behind ML concepts; experience in the messaging space is a plus.You have hands-on experience implementing and maintaining production ML systems in Python, Scala, and using libraries like TensorFlow or PyTorch.You are experienced with building data pipelines, and you are self-sufficient in getting the data you need to build and evaluate your models.You preferably have experience with cloud platforms like GCP or AWS.Where You'll Be:For this role, you will be based in London.

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Data Science Tools Do You Need to Know to Get a Data Science Job?

If you’re trying to break into data science — or progress your career — it can feel like you are drowning in names: Python, R, TensorFlow, PyTorch, SQL, Spark, AWS, Scikit-learn, Jupyter, Tableau, Power BI…the list just keeps going. With every job advert listing a different combination of tools, many applicants fall into a trap: they try to learn everything. The result? Long tool lists that sound impressive — but little depth to back them up. Here’s the straight-talk version most hiring managers won’t explicitly tell you: 👉 You don’t need to know every data science tool to get hired. 👉 You need to know the right ones — deeply — and know how to use them to solve real problems. Tools matter, but only in service of outcomes. So how many data science tools do you actually need to know to get a job? For most job seekers, the answer is not “27” — it’s more like 8–12, thoughtfully chosen and well understood. This guide explains what employers really value, which tools are core, which are role-specific, and how to focus your toolbox so your CV and interviews shine.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.