National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Machine Learning Engineer

Elecnor Deimos
Harwell
1 year ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer with Data Engineering expertise (Basé à London)

Machine Learning Engineer with Data Engineering expertise

Machine Learning Engineer with Data Engineering expertise (London)

Machine Learning Engineer with Data Engineering expertise (London)

Machine Learning Engineer with Data Engineering expertise

Machine Learning Engineer with Data Engineering expertise

Machine Learning Engineer

DEIMOS is looking for an engineer to join the Computer Vision/Artificial Intelligence (CV/AI) Competence Centre of the Avionics Business Unit, Flight Systems Directorate.

This role focuses on supporting Deimos’ AI/CV flight systems team in researching, developing, deploying and scaling our computer vision portfolio for onboard processing applications in Space. You will work on Machine Learning projects and products throughout their lifecycle – from early-phase R&D activities to productization and deployment.

The work of the AI/CV Competence Centre is oriented to the design, development, specification, and validation of Computer Vision solutions for embedded flight segment applications, including real-time advanced onboard data processing and intelligent decision making.

This preferred locations for this role are either Harwell, UK, or Madrid, Spain, although other Deimos sites may also be considered.

Duties:

The main responsibilities are:

Research, design, implement, and deploy machine learning models and algorithms that address specific challenges and opportunities related to on-board processing in Space. Collaborate with team-members and clients across Europe to understand project requirements, objectives, and constraints. Process and analyse datasets to extract meaningful insights and features for model development. Design, implement and maintain industry-standard MLOps infrastructure for new and existing ML products Optimize and standardize ML training and validation processes, data warehousing and pipelines.

Education:

Master’s or Ph.D. in Computer Science, Machine Learning, Data Science, or a related field.

Professional Experience:

The position will be tailored to the level of experience; practical industry experience deploying and maintaining ML systems in production would be viewed very positively.

Technical Requirements:

Required:

Strong foundation in machine learning algorithms, statistics, and data structures within relevant technical projects. Proficiency in programming languages, frameworks, and tools, such as Python, TensorFlow, PyTorch. Experience with data preprocessing, feature engineering, and model evaluation techniques.

Highly Desirable:

Experience working on aerospace-related projects Experience deploying MLOps solutions and working within CI/CD frameworks Experience with Linux systems and cloud infrastructure (AWS, Azure, etc.) Experience developing embedded ML applications (C++, CUDA, TensorRT)

Language Skills:

Good level of English, spoken and written

Personal Skills:

Capability to integrate in and work within a trans-European team Solid organisational, analytical and reporting skills Autonomy and willingness to take initiative Excellent communication skills Energetic, positive team player mentality

Ref.:

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Data Science Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

The ability to communicate clearly is now just as important as knowing how to build a predictive model or fine-tune a neural network. In fact, many UK data science job interviews are now designed to test your ability to explain your work to non-technical audiences—not just your technical competence. Whether you’re applying for your first data science role or moving into a lead or consultancy position, this guide will show you how to structure your presentation, simplify technical content, design effective visuals, and confidently answer stakeholder questions.

Data Science Jobs UK 2025: 50 Companies Hiring Now

Bookmark this guide—refreshed every quarter—so you always know who’s really expanding their data‑science teams. Budgets for predictive analytics, GenAI pilots & real‑time decision engines keep climbing in 2025. The UK’s National AI Strategy, tax relief for R&D & a sharp rise in cloud adoption mean employers need applied scientists, ML engineers, experiment designers, causal‑inference specialists & analytics leaders—right now. Below you’ll find 50 organisations that have advertised UK‑based data‑science vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the kind of employer—& culture—that suits you. For every company you’ll see: Main UK hub Example live or recent vacancy Why it’s worth a look (tech stack, mission, culture) Search any employer on DataScience‑Jobs.co.uk to view current ads, or set up a free alert so fresh openings land straight in your inbox.

Return-to-Work Pathways: Relaunch Your Data Science Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like stepping into a whole new world—especially in a dynamic field like data science. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s data science sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve gained and provide mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for data science talent in the UK Leverage your organisational, communication and analytical skills in data science roles Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to data science Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to data science Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as a data analyst, machine learning engineer, data visualisation specialist or data science manager, this article will map out the steps and resources you need to reignite your data science career.