Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Machine Learning Engineer

Elecnor Deimos
Harwell
1 year ago
Applications closed

Related Jobs

View all jobs

Data Science Manager

Data Science Manager

Azure Data Engineer - Manchester

Azure Data Engineer - Manchester

Lead/ VP AWS Data Engineer

Cloud Data Engineer

Machine Learning Engineer

DEIMOS is looking for an engineer to join the Computer Vision/Artificial Intelligence (CV/AI) Competence Centre of the Avionics Business Unit, Flight Systems Directorate.

This role focuses on supporting Deimos’ AI/CV flight systems team in researching, developing, deploying and scaling our computer vision portfolio for onboard processing applications in Space. You will work on Machine Learning projects and products throughout their lifecycle – from early-phase R&D activities to productization and deployment.

The work of the AI/CV Competence Centre is oriented to the design, development, specification, and validation of Computer Vision solutions for embedded flight segment applications, including real-time advanced onboard data processing and intelligent decision making.

This preferred locations for this role are either Harwell, UK, or Madrid, Spain, although other Deimos sites may also be considered.

Duties:

The main responsibilities are:

Research, design, implement, and deploy machine learning models and algorithms that address specific challenges and opportunities related to on-board processing in Space. Collaborate with team-members and clients across Europe to understand project requirements, objectives, and constraints. Process and analyse datasets to extract meaningful insights and features for model development. Design, implement and maintain industry-standard MLOps infrastructure for new and existing ML products Optimize and standardize ML training and validation processes, data warehousing and pipelines.

Education:

Master’s or Ph.D. in Computer Science, Machine Learning, Data Science, or a related field.

Professional Experience:

The position will be tailored to the level of experience; practical industry experience deploying and maintaining ML systems in production would be viewed very positively.

Technical Requirements:

Required:

Strong foundation in machine learning algorithms, statistics, and data structures within relevant technical projects. Proficiency in programming languages, frameworks, and tools, such as Python, TensorFlow, PyTorch. Experience with data preprocessing, feature engineering, and model evaluation techniques.

Highly Desirable:

Experience working on aerospace-related projects Experience deploying MLOps solutions and working within CI/CD frameworks Experience with Linux systems and cloud infrastructure (AWS, Azure, etc.) Experience developing embedded ML applications (C++, CUDA, TensorRT)

Language Skills:

Good level of English, spoken and written

Personal Skills:

Capability to integrate in and work within a trans-European team Solid organisational, analytical and reporting skills Autonomy and willingness to take initiative Excellent communication skills Energetic, positive team player mentality

Ref.:

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Best Free Tools & Platforms to Practise Data Science Skills in 2025/26

Data science continues to be one of the most exciting, high-growth career paths in the UK and worldwide. From predicting customer behaviour to detecting fraud and driving healthcare innovations, data scientists are at the forefront of digital transformation. But breaking into the field isn’t just about having a degree. Employers are looking for candidates who can demonstrate practical data science skills — analysing datasets, building machine learning models, and presenting insights that solve real business problems. The best part? You don’t need to spend thousands on premium courses or expensive software. There are dozens of high-quality, free tools and platforms that allow you to practise data science in 2025. This guide explores the best ones to help you learn, experiment, and build portfolio-ready projects.

Top 10 Skills in Data Science According to LinkedIn & Indeed Job Postings

Data science isn’t just a buzzword — it’s the engine powering innovation in sectors across the UK, from finance and healthcare to retail and public policy. As organisations strive to turn data into insight and action, the need for well-rounded data scientists is surging. But what precise skills are employers demanding right now? Drawing on trends seen in LinkedIn and Indeed job ads, this article reveals the Top 10 data science skills sought by UK employers in 2025. You’ll get guidance on showcasing these in your CV, acing interviews, and building proof of your capabilities.

The Future of Data Science Jobs: Careers That Don’t Exist Yet

Data science has rapidly evolved into one of the most important disciplines of the 21st century. Once a niche field combining elements of statistics and computer science, it is now at the heart of decision-making across industries. Businesses, governments, and charities rely on data scientists to uncover insights, forecast trends, and build predictive models that shape strategy. In the UK, data science has become central to economic growth. From the NHS using data to improve patient outcomes to financial institutions modelling risk, the applications are endless. The UK’s thriving tech hubs in London, Cambridge, and Manchester are creating high demand for data talent, with salaries often outpacing other technology roles. Yet despite its current importance, data science is still in its infancy. Advances in artificial intelligence, quantum computing, automation, and ethics will transform what data scientists do. Many of the most vital data science jobs of the next two decades don’t exist yet. This article explores why new careers are emerging, the roles likely to appear, how current jobs will evolve, why the UK is well positioned, and how professionals can prepare now.