Machine Learning Engineer

Techfueld
Manchester
11 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Generative AI Data Scientist — Remote (SC Cleared)

Hybrid Data Engineer: Cloud Pipelines & Data Lake

Head of Data Science & ML Engineering

Sr. Data Engineer

About the Client

Our client is a dynamic startup who are revolutionizing the future of AI and machine learning applications. They are dedicated to pushing the boundaries of technology to create innovative solutions that drive real-world impact. Initially focused on the automotive market their technology will be able to be utilized in cross-industry as they grow.



Overview of the Role

Our client is searching for a hands-on AI/ML expert who is passionate about building new technologies to support building a new first-of-its-kind product on the market.



Responsibilities

Develop concepts for prompt engineering and multi-agent collaboration systems

Implement and fine-tune large language models (LLMs) for various applications

Implement and fine-tune TAG systems

Conduct testing and evaluation of AI models, ensuring robustness and performance

Stay up-to-date with the latest advancements in AI and machine learning research



Mandatory skills

  • Proficiency in Python programming language
  • Experience with large language models (LLMs), prompt engineering, and RAG pipelines
  • Hands-on experience with LLM agent orchestration frameworks



Skills and Qualifications

  • Bachelor's degree in Computer Science, Engineering, or related field
  • Experience with model fine-tuning techniques
  • Experience with cloud platforms



Who is Techfueld?

Techfueld is a specialist search firm focused solely within E-mobility & Vehicle Technology recruitment. We offer retained, contingent and project/team builds for automotive suppliers and car manufacturers across Europe, North America, and APAC regions.

All conversations are held confidentially, and your information is only forwarded to any of our clients, should you wish to proceed.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.